• Title/Summary/Keyword: 목재 종류

Search Result 239, Processing Time 0.019 seconds

A Study on the Block Shear Strength according to the Layer Composition of and Adhesive Type of Ply-Lam CLT (Ply-Lam CLT의 층재 구성 및 접착제 종류에 따른 블록전단강도에 관한 연구)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.791-806
    • /
    • 2020
  • In this study, a block shear strength test was conducted to compare and analyze the strength and failure mode on the glued laminated timber, CLT, and Ply-lam CLT, which are mainly used for the construction of wood construction as engineering wood. Through this, the Ply-lam CLT manufacturing conditions for optimum production, such as the type of lamina, plywood, adhesive, and layer composition, were investigated. The results are as follow. Through block shear strength test, it showed high strength in the order of glued laminated timber, Ply-lam CLT and CLT. In particular, the shear strength of Ply-lam CLT, which is made of a composite structure of larch plywood and larch lamina, passed 7.1 N/㎟, which is a Korean industrial standards for block shear strength of structural glued laminated timber. In addition, in this study, there was no different in shear strength according to the adhesive type used for glulam, CLT, and Ply-lam CLT adhesion. However, in the case of Ply-lam CLT, the difference in shear strength of Ply-lam CLT was shown according to the type of lamina and plywood. The results showed high strength in the order of Larix kaempferi > Mixed light hardwood ≒ Pinus densiflora, sieb, et, Zucc plywood. The optimal configuration of Ply-lam CLT is when larch plywood and larch lamina are used, and it is decided that the adhesive can be used by selecting PRF and PUR according to the application. The results of block shear strength failure mode by type of wood based materials were analyzed. The failure mode showed shear parallel-to-grain for glulam, rolling shear for CLT, and shear parallel-to-grain and rolling for ply-lam CLT. This is closely related to shear strength results and is decided to indicate higher shear strength in Ply-lam CLT than in CLT due to rolling shear.

Effect of Sugarcane Bagasse Soda-AQ Pulp Bleaching Properties by Type of Chelate Compounds and Simultaneous Process of (DQ) Stage (이산화염소 표백단계와 킬레이트 처리단계 동시 진행 시 킬레이트 종류가 사탕수수 Soda-AQ 펄프 표백에 미치는 영향)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.147-155
    • /
    • 2016
  • Pulp made from sugarcane bagasse (SCB) was bleached in element chlorine free (ECF) sequence. The peroxide bleaching process for the final bleaching process has been introduced in order to reduce the use of chlorine dioxide. Prior to peroxide bleaching, different chelating chemicals were applied. When 4.5% of the total chlorine dioxide was used, bleached SCB pulp using additional DTPA chelate stage (DEDQP) resulted in 87.0% of the ISO brightness. However, bleached pulp using simultaneous stage of DTPA chelate and chlorine dioxide (DE(DQ)P) was reached at 83.9% of the ISO brightness. The viscosity of DEDQP bleached pulp was 25.6 cPs, and the one of DE(DQ)P bleached pulp was 21.9 cPs. Decreasing of chelate effect by chlorine dioxide led to a decrease in the final brightness and a lower viscosity. But simultaneous stage of EDTA chelate and chlorine dioxide (DE(DQ)P) led to higher final brightness (87.0% ISO) and higher viscosity (25.8 cPs) than those of the $DEDQ_{EDTA}P$ bleached pulp (86.4% ISO, 25.2 cPs).

Manufacture and Properties of White Charcoal Board in Relation with Final Mat Moisture Content and Charcoal Particle Size (백탄파티클 크기와 최종매트함수율에 따른 백탄보드의 제조와 성능)

  • Lee, Hwa Hyoung;Cho, Youn Mean;Park, Han Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.22-29
    • /
    • 2005
  • This research was carried out not only to examine the proper manufacturing condition for white charcoal board in relation to charcoal particle size and final mat moisture content (FMC), but also to maintain the advantageous properties of white charcoal as a well being building material against the sick house problem. Excellent functional white charcoal board was produced with two groups of FMC 20~25% and FMC 36~60%. The latter showed best results among tested samples in two types which are #40-60type-P15%, M5%, FMC 60% and mixed type-P15%, M5%, FMC36% with non formaldehyde adhesives [MDI (M), poly vinyl acetate emulsion (P)] and three stage pressing cycle of 30-10-$30kgf/cm^2$ (1 min.-1.5 min.-6 min.). The former gave highly acceptable results in two types which are #6 over-M15%FMC25% and mixed type-M25%FMC20%. White charcoal board gave excellent in dimensional stability, gas adsorption and far-infrared emission.

Bending Strength Performance Evaluation of Glass Fiber Cloth Reinforced Cylindrical Laminated Veneer Lumber (직물형 유리섬유로 보강된 원통형 단판적층재의 휨 강도 성능 평가)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • Cylindrical laminated veneer lumber (LVL) is produced by winding the veneer tape on a circular cylinder. The veneer tape was produced by cutting the veneer into a rectangular shape and sewing it in a vertical direction to the fiber. The tensile strength test was carried out by producing the veneer tape specimen with different species of veneer, types and combinations of sewing yarn. The Radiata pine veneer tape produced with three sewing lines using the reinforced sewing thread had the best tensile strength. Also, the separation and snapping problems of the veneer tape were improved, resulting in the improvement in the workability of cylindrical LVL. The bending strength of various cylindrical LVL produced with different types of veneer tape and a different number of lamination layers and the application of reinforcement with glass fiber cloth was compared with that of Larix log. Bending MOR of cylindrical LVL reinforced with glass fiber cloth at the volume ratio of 11% was improved by 65% in comparison to the non-reinforced cylindrical LVL. In the case of the cylindrical LVL produced with 2 sewing lines of veneer tape, a fracture occurred at the butt joint between the veneer tapes. However, in the case of the cylindrical LVL produced with 3 sewing lines of veneer tape a fracture occurred in the fiber direction.

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber (각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향)

  • Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

A Study on the Optical Characteristics According to the Lacquer Drying Conditions for the Conservation of Lacquerwares (칠기문화재 보존을 위한 옻칠 건조조건에 따른 광학적 특성 연구)

  • Hwang, In Sun;Park, Jung Hae;Kim, Soo-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.610-621
    • /
    • 2018
  • In conservation treatment lacquer has been used variously as a restoration material. However, dealing with Lacquer is very difficult as it dried in high humidity that can be harmful to the base materials. Also being natural varnish, dried lacquer layer is very different from the drying condition and the quality of the lacquer. These make difficult to predict the result of drying lacquer. In this study, using the humidity control machine, firstly, the main contents of the two different type of lacquer was experimented. And these lacquers was cured in various conditions. The duration time was checked until totally hardened. After that, obtained lacquer layers was analyzed to understand optical properties. Therefore, this study made a result about the relationship between characteristics of lacquer layer and the hardening condition. As a result, duration time of the Korean lacquer drying which has average 13.4% more urushiol than the Chinese lacquer is recorded a twice or triple decrease over it of the Chinese one. And, in all types of lacquer, the higher humidity makes the faster a pace of lacquer dried. In same lacquer, the shorter the duration time of drying lacquer is much darker and glossier. However, gloss deteriorated in saturated humidity. In humidity lower than RH 70%, lacquer is not hardened in 336 hours. When the layer totally cured through long period more than 30 days, the drying lacquer is appeared high brightness and almost transparent. Thus, in lower than RH 70%, it is hard to obtain durable layer.

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.

A Study on Procurement of Construction Materials in the HwaSeong Construction Project (화성건설공사에서 자재의 조달방법 연구)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.183-188
    • /
    • 2009
  • HwaSeong (Suwon Fortress) was built during the reign of King Jeong-jo in the Choseon Dynasty. Detailed information on the construction of HwaSeong can be found in Hwaseong Seongyeok Euigui. In this sense, it is necessary to perform a comparative analysis on the Hwaseong Seongyeok Euigui based on construction management factors. This paper aims to analyze the HwaSeong construction project from a modern construction perspective by comparing and reviewing information related to the procurement of construction materials of the time. For this, wooden and steel materials and tiles were analyzed by supply area, supply channel, type and price. From the results of the analysis, it is found that the government used both private and official channels to supply materials. In particular, except for wooden materials that could be supplied from Bongsan, the supply of materials showed a high dependency on private channels. In terms of steel, it was almost 30 percent cheaper through private channels than when purchased through the official channel. Finally, materials vulnerable to damage like tiles were manufactured from the areas near the construction site. From this fact it can be interpreted that the government had a flexible procurement system, including manufacturing on the spot and external suppliers,depending on the property of the material. It is expected these analytical results will serve as key data to understand the management factors in constructing HwaSeong.

Effect of the Sequence of Wax Addition, Wax Level and Type on Properties of Isocyanate-Bonded Particleboard (왁스첨가(添加) 순서(順序), 첨가량(添加量), 종류(種類)가 Isocyanate 접착(接着) PB의 성질(性質)에 미치는 영향(影響))

  • Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.70-76
    • /
    • 1995
  • Research was conducted at the Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA to evaluate the effects of the sequence of wax addition, wax level, and wax type on mechanical properties and water resistance performance of isocyanate-bonded particleboard. Mechanical properties and water resistance performance were not influenced significantly by the sequence of wax addition. Internal bond and wet modulus of rupture in bending strength were decreased significantly by increasing the wax emulsion level, but dry modulus of rupture and modulus of elasticity in bending strength were not decreased significantly by increasing the wax emulsion level. Dry internal bond, dry and wet moduli of rupture, and modulus of elasticity were not decreased by increasing the solid wax level except for wet internal bond. The addition of 1.0 and 1.5% wax level did not produce any significant additional water resistance effect when compared to the addition of 0.5% wax level. Internal bond values of boards with solid wax addition showed significantly better results than boards with just a wax emulsion added. Modulus of rupture, modulus of elasticity, and water resistance performance did not show significant difference between solid wax and wax emulsion.

  • PDF

Physicochemical Changes of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도가 목탄의 물리·화학적 특성에 미치는 영향)

  • Jo, Tae-Su;Choi, Joon-Weon;Lee, Oh-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.53-60
    • /
    • 2007
  • Carbon content, properties of micro-pore, and chemical properties of the charcoal prepared from wood powder, wood fiber, and bark of Abies sibirica Ledeb at different temperatures were investigated. The yield of charcoal decreased with increasing the carbonization temperature. The yield of bark charcoal was higher than those of wood and wood fiber charcoal. The content ratio of carbon atom in the charcoal increased with increasing the carbonization temperature, whereas those of hydrogen and oxygen atom were decreased. Ash content of bark charcoal was also higher than those of wood and wood fiber charcoal. The specific surface area of wood and wood fiber charcoal was greater than that of bark charcoal. In all charcoal, the specific surface area and the volume of micro-pore were highest when the carbonization temperature was $600^{\circ}C$, however they tended to decrease when the temperature was reached to $800^{\circ}C$. For the functionality test of chemical groups on the charcoal surface, adsorption test have performed against acidic (HCl) and basic chemicals (NaOH, $Na_2CO_3$, and $NaHCO_3$). As carbonization temperature increased, adsorption amount of HCl increased, while adsorption amounts of NaOH, $Na_2CO_3$, and $NaHCO_3$ were decreased. The charcoal prepared at higher temperature showed basic properties, while the charcoals manufactured at lower temperature presented acidic properties. Therefore, it was considered that the carbonization temperature affected the pH of charcoal.