• Title/Summary/Keyword: 목재 접착제

Search Result 123, Processing Time 0.031 seconds

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.

Liquefaction of Wood and It's Application for Adhesives - Acid-Catalyzed Liquefaction of Wood with Phenol - (목재의 용액화와 접착제에의 응용 - 산촉매하에서 페놀에 의한 목재의 용액화 -)

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • Acid-catalysts were used to accelerate the liquefaction of wood with phenol. Sulfuric acid was quite excellent as a acid-catalyst of liquefaction of wood. It's proper dose was 3% of oven-dried weight of wood to get the 10% of target degree of residue, when the reaction time was 2 hours. The liquefaction of wood catalyzed with sulfuric acid was easily carried out at low temperature of 140$^{\circ}C$, but the degrees of residue decreased gradually with the increase of reaction temperature. The behaviors of liquefaction of oak and radiata pine were nearly same.

  • PDF

Effects of UF Resin and Taro Adhesive Mixture on Plywood Bonding Strength (요소수지(尿素樹脂)와 토란접착제(土卵接着劑) 혼용(混用)이 합판(合板)의 접착력(接着力)에 미치는 영향(影響))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 1984
  • Taro-UF mixed type resin system was developed for gluing plywoods. The taro adhesive that was activated with sodium hydroxide was mixed with the definite ratios of UF resin adhesive. At the sametime, wheat-UF mixed type resin was also applied with the same method as taro-UF mixed type resin The mixing ratios of taro or wheat adhesive: UF resin were 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 80:20, and 100:0 by weight. In addition, the UF resins extended with wheat powder at the extending ratios of wheat powder UF resin, 10:90, 20:80, 30:70, 40:60, and 50:50 by weight, were also used. The dry and wet shear strengths of the plywoods of 30:70 (taro adhesive : UF resin) mixing ratio were highest. The dry shear strengths of the plywoods manufactured with the UF resin-mixing taro adhesive were higher than those of the plywoods with the UF resin-mixing wheat adhesive at 10:90, 20:80, 30:70, 40:60, 50:50, and 60:40 (taro or wheat adhesive: UF resin) mixing ratios. At all mixing ratios, the wet shear strengths of the plywoods manufactured with the UF resin-mixing taro adhesive were higher than those of the plywoods with the UF resin-mixing wheat adhesive. The dry and wet shear strengths of the plywoods manufactured with the UF resin-mixing wheat adhesive were higher than those of the plywoods with the wheat powder-extending UF resin at the mixmg ratios, 10:90, 20:80, 30:70, and 40:60 (wheat adhesive or wheat powder: UF resin). So, it was found that the plywoods manufactured with the UF resin-mixing taro adhesive and the UF resin mixing wheat adhesive had better shear strength than the plywoods with the wheat powder-extending UF resin. It was because the taro adhesive and wheat adhesive themselves took the bonding properties after being activated with alkali.

  • PDF

Experimental Study on Pull-out Strength of Glued-in Rods Connection according to Adhesive (접착제에 따른 Glued-in Rod 접합부 인발성능에 관한 실험 연구)

  • Park, Keum-Sung;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2022
  • In this study, a pull-out test considering the adhesive type, embedded length, and direction of re-bar was conducted to evaluate the pull-out performance of glued-in rod joints using timber and adhesive produced in Korea. In the test, the specimens using liquid adhesive showed better pull-out performance, and the longer the embedded length of the re-bar, the higher the maximum tensile load by inducing the yield of the re-bar first. Through the test results, a glued-in rod joints design, which is advantageous to design the adhesive strength stronger than the yield strength of re-bar, was proposed, and a correction factor of 0.75 for the adhesive strength considering construction error was also suggested.

Density, Bonding Strength, Bending strength and Decay Resistance of Radiata Pine Laminated Veneer Lumber (라디에타소나무 단판적층재의 밀도·접착·강도성능 및 내부후성)

  • Suh, Jin-Suk;Lee, Dong-Heub;Hwang, Won-Joung;Oh, Hyung-Min;Park, Young-Ran;Kang, Sung-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.344-350
    • /
    • 2011
  • In this study, LVLs of radiata pine were fabricated with non-preservative treated veneers, CuAz treated veneers, and ACQ treated veneers, using aqueous vinyl urethane adhesive and phenol modified resorcinol resin adhesive. Then density gradient, bonding strength, bending properties and decay resistance of LVLs were evaluated. As results, the cone-shaped and higher density gradient pattern was found in layer close to glueline. After cyclic water boiled test, the LVL bonded with aqueous vinyl urethane resin adhesive was delaminated in all layers or partly delaminated including check, chasm in glueline layer. In the case of LVL bonded with phenol modified resorcinol resin adhesive, despite slight cupping due to great glueline stress and vertical check between glueline layers, it was observed that the bonding strength to delamination was higher, owing to most absence of delamination through overall glueline. On the other hand, in the decay test, mass loss by brown rot fungi was greater than white rot fungi in LVL bonded with aqueous vinyl urethane resin adhesive. However, in LVL bonded with phenol modified resorcinol resin adhesive, the mass loss by brown rot fungi was slight and non-preservative treated LVL was low. The mass loss of preservative-treated LVL was 0 (zero), showing the high decay resistance effect.

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Studies on Chemical Strutures and Adhesion Performance of pMDI Adhesives Modified by Ozonized Soybean Oil with Different Mixing Ratios (오존산화 콩기름의 구조분석 및 이를 이용한 변성 pMDI 접착제의 중량비에 따른 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.56-64
    • /
    • 2009
  • The purpose of this study was to investigate and develop an eco-friendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oil (SBO) was reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. The investigation of the modified chemical structure of the ozonized SBOs were conducted using FT-IR, $^1H$-NMR, MALDI-TOF MS, and GC/MS. As ozonification time increased, the peak of the unsaturated double bonds was disappeared and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywoods were made at $110^{\circ}C$ with 30 seconds/mm hot-press time using the different ozonized SBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased with increasing ozonification time. The weight ratio 1:1 (ozonized SBO/pMDI), all strengths in 15, 30 and 60 minuets, exceeded constantly the dry, wet, cyclic boiling standard requirement. The range of ozonification time and weight ratio can fulfil1 the requirment of the wet test standard were 30~60 minutes and more than 0.5 pMDI. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that ozonized SBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.

Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods (봉형 GFRP를 삽입접착한 낙엽송 집성재 접합부의 모멘트저항 성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.60-67
    • /
    • 2015
  • In order to evaluate the bond performance of domestic larch glulam and the glass fiber reinforced plastic (GFRP) rod, the specimen with the GFRP rod bonded-in domestic larch glulam for pull-out test was produced. The test was carried out using various specimens with different gluing depth, width of glue-line and type of adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods was produced based on the result of pull-out test, and its moment resistance performance was compared and examined with the moment resistance performance of slotted-in steel plate specimen. As a result of the pull-out test, the most excellent bond performance was found when the insertion depth of GFRP rods was 5 times larger than the diameter of GFRP rods. When the glue-line thickness was 1 mm, the bond performance improved by 17%~29% in comparison to the bond performance in the case of the glue-line thickness of 2 mm. Also, the bonded strength of the specimen used with poly-urethane adhesive was 2.9~4.0 times greater than the bonded strength of specimen used with resorcinol adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods showed the moment resistance performance 0.82 times lower in comparison to the slotted-in steel plate specimen used with the drift pin, but the initial stiffness was similar as 0.93 times.

Properties of Plywood Bonded with Adhesive Resins Formulated with Enzymatically-Hydrolyzed Rapeseed Flour (유채박의 효소 가수분해물로 조제한 접착제를 사용한 합판의 접착특성)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.164-176
    • /
    • 2012
  • In the present study, rapeseed flour (RSF), which is a by-product from the production of edible oil and biodiesel extracted from rapeseed, was used to develop alternative adhesives for the production of plywood panels. To examine the effects of the enzyme on the adhesive properties and formaldehyde emission of the RSF-based adhesive resins, three enzymes, such as cellulase (CEL), pectinase (PEC) and protease (ALC), were used either separately or together. As a crosslinking agent, PF prepolymers, which were prepared with 1.5, 1.8 and 2.1 mole formaldehyde and 1 mol phenol (1.8-, 2.1- and 2.4-PF), were added into the RSF hydrolyzates. The adhesive resins formulated with CEL- or CEL-PEC-RSF hydrolyzates and 1.8-F/P PF prepolymers exhibited excellent adhesive strengths and formaldehyde emission. The tensile shear strength and formaldehyde emission of the plywood panels bonded with the formulate resins were satisfied with the minimum requirement of the KS standard for ordinary plywood panels (0.6 N/$mm^2$). In addition, formaldehyde emissions of the plywood panels approached to that of E0 specified in the KS standard (0.5 mg/${\ell}$), and even had much better than those of commercial UF glue mixes. Overall, the use of RSF-based adhesive resins for the production of plywood panels might provide durable adhesive properties and an environmentally friendly substitute for petroleum-based adhesive resins. However, further researches - the increase of solid content of RSF-based adhesives for reducing press time and the microscopic observation of plywood specimen for identifying the relationship between tensile shear strength and the penetration of adhesives into wood structure - are required to commercialize the RSF-based adhesives.