• Title/Summary/Keyword: 목재섬유

Search Result 346, Processing Time 0.023 seconds

Effect of Wetting Agent on Acoustic Emission of Wood (습윤제(濕潤劑) 농도(濃度)에 따른 목재(木材)의 음향방사(音響放射))

  • Kang, Ho-Yang;Hur, Jong-Yun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.57-64
    • /
    • 1996
  • 제지공장에서 사용하는 습윤제는 물의 표면장력을 낮춤으로써 목재섬유가 물을 빨리 흡수하여 팽윤하도록 도와준다. 목재섬유가 물을 흡수하여 팽윤하는 과정을 밝히지 위한 연구가 많이 진행되어 왔지만 목재섬유와 물의 상호작용을 상세히 연속적으로 측정할 방법이 전에는 별로 없었다. 목재섬유가 팽윤할 때 발생하는 팽윤압력은 음향방사를 동반하기 때문에 이를 측정하여 팽윤과정을 알아내는 기술이 개발되었다. 본 연구에서는 이 방법을 이용하여 목재를 여러 농도의 습윤제에 담갔을 때 발생하는 음향방사와 중량증가를 측정하여 이 두 변량의 상관을 조사하고 이 방법이 목재의 습윤과정 연구에 유용하게 사용될 수 있는지를 조사하였다. 아까시나무와 라디에타 파인의 두 수종을 사용하였는데 두 수종의 흡수 형태는 매우 달랐다. 5분 동안 용액에 침지하였을 때 후자가 전자보다 10배 정도 더 많이 중량증가하였으며, 발생한 음향방사도 후자가 전자보다 훨씬 많았다. 아까시나무의 중량증가와 음향방사는 습윤제 농도에 거의 무관하였으나 라디에타 파인의 음향방사는 습윤제 농도의 증가에 따라 증가하였으며 라디에타 파인의 중량증가는 습윤제의 표면장력 변화와 일치하였다. 수종별 중량증가와 음향방사의 관계는 아까시나무가 음의 상관을 나타냈으나 라디에타 파인은 양의 상관을 나타내었다. 자비처리 시편은 무처리 시편보다 음향방사가 적었다.

  • PDF

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Properties of Composites Reinforced with Fiberglass to Wood and Particleboard Using VARTM (Vacuum Assisted Resin Transfer Molding) Fabrication Process (VARTM (Vacuum Assisted Resin Transfer Molding) 방법에 의해 목재 및 파티클보드를 유리섬유로 보강한 복합소재의 성질)

  • Cha, Jae Kyung;Lee, Sung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • This research investigates the composites reinforced with fiberglass to wood and commercial particleboard using VARTM process to enhance the mechanical properties. Specimens were prepared from lumbers from thinning crop-trees and commercial particleboard. Matched specimen were reinforced on both sides with one layer of unidirectional fiberglass roving. Fiberglass reinforcement to wood and particleboard using VARTM process improved mechanical properties.

The Application of Rule of Mixtures to Fiber-Reinforced Composites(1) - Mechanical Properties of Fiber-Reinforced, Sulfur-Based Composites - (목재 섬유 복합재(複合材)에 혼합이론(混合理論)의 적용에 관(關)한 연구(硏究) (1) - 유황(硫黃) 화합물(化合物)을 사용한 목재(木材) 섬유(纖維) 복합재(複合材)의 기계적 성질(性質) -)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.3-13
    • /
    • 1983
  • Fiber mats were made at five density levels, using fibers from kraft pulp screening rejects, rice straw and a 50/50 mixture of the two. They were soaked in the sulfur compounds. Specimens cut from the composite panels were tested in flexure at time intervals for one year to study the effect of aging. Modulus of elasticity (MOE) and modulus of rupture (MOR) were determined. Under optimum conditions of fiber mat preparation and saturation with molten sulfur and modified sulfur, composites were produced which exhibited mechanical properties comparable to conventional fiberglass in some properties and superior to conventional wood-based composition boards, For example. the moduli of elasticity of the reinforced composites made from pulp screening rejects, with a density of 0.35 gm/$cm^3$, were greater than 1,000,000 psi as compared 800.000 psi for high-density hardboard (1.28 gm/$cm^3$). Modulus of rupture of the best reinforced composites was about 7,000 psi, comparable to 6,000 psi of high-density hardboard.

  • PDF

The Application of Rule of Mixtures to Fiber-Reinforced Composites(3) - Determination of Constant "a" and "b" for Modified Rule of Mixtures Applied to Fiber-Reinforced, Sulfur-Based Composites - (목재 섬유 복합재(複合材)에 혼합이론(混合理論)의 적용에 관한 연구(硏究)(3) - 유황(硫黃) 화합물(化合物)을 사용한 목재(木材) 섬유(纖維) 복합재(複合材)에 수정된 혼합이론(混合理論)의 상수(常數) 결정(決定) -)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.3-8
    • /
    • 1984
  • It is shown that Paul and Jones' Rule of Mixtures modified by Smith and Cox's theory can be used for the fiber-reinforced, sulfur-based composites, when the constant for the linear regression equation is given. The computation results, programmed by Hewlett Packard 75C (HP 75C) using math rom pack for the linear regression form, expressed as $E_c=\frac{1}{3}aE_fV_f+bE_mV_m$, turn out to be a=3.27-3.54 b=-2.47~-2.80. This results indicate that the factors such as density of fiber mat and the amount of matrix used have nothing for affecting the numerical value of the constants a and b of the linear regression form. Conclusively this results also show that the Paul and Jones' Rule of Mixtures which has been used for the composites made by randomly-oriented long fiber can also be used for the composites made by short fiber with the same fiber orientation such as wood and lignocellulosic fibers.

  • PDF

Effect of Green Tea and Saw Dust Contents on Static Bending Strength Performance of Hybrid Boards Composed of Wood Fiber, Saw Dust and Green Tea (목재섬유, 톱밥 및 녹차 이종복합보드의 정적 휨 강도성능에 미치는 녹차 및 톱밥 배합비율의 영향)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyung;Kwon, Chang-Bae;Heo, Hwang-Sun;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • In this study, in addition to the green tea-wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on static bending strength performances. Static bending MOE (modulus of elasticity) was within 0.956~1.18GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 2.0~3.1times lower than those of green tea-wood fiber hybrid composite boards reported in the previous researches. The bending MOR (modulus of rupture) showed 8.99~11.5MPa, the change of the bending MOR with component ratio of the factors was the same as that of bending MOE. These values had 1.9~3.5 times lower value than those of green tea-wood fiber hybrid composite boards, and showed the slightly lower values than the MOR of particle boards (PB) and medium density fiberboards (MDF) prescribed in Korean Industrial Standard. Therefore, it is considered that these hybrid composite boards need to improve strength performances by component ratio change, hybrid composite with other materials and adhesive change etc. in order to industrialize the hybrid composite boards.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

Effect of Green Tea Content on Dynamic Modulus of Elasticity of Hybrid Boards Composed of Green Tea and Wood Fibers, and Prediction of Static Bending Strength Performances by Flexural Vibration Test (녹차-목재섬유복합보드의 동적탄성률에 미치는 녹차배합비율의 영향 및 휨 진동법에 의한 정적 휨 강도성능 예측)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyeong;Kwon, Chang-Bea;Heo, Hwang-Sun;Byeon, Hee-Seop;Yang, Jae-Kyung;Kim, Jong-Cheol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.538-547
    • /
    • 2011
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on dynamic MOEs (modulus of elasticity) of these green tea and wood fibers composite boards were investigated. The dynamic MOEs of hybrid composite boards were lower than those of control boards without green tea, and the values decreased with the increase of green tea content. Also, the dynamic MOEs appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.06~1.54 times higher than that manufactured from $E_0$ grade. And, the differences between hybrid composite boards manufactured from both adhesive increased with the increase of green tea content. On the other hand, high correlations were found between dynamic MOE and static bending strength performances, it was concluded that static bending strength performances could be estimated from the dynamic MOE, except for a few hybrid board types with large variations.