• Title/Summary/Keyword: 목본

Search Result 244, Processing Time 0.019 seconds

A Study on the Meaning of Plant Material in the 2016 Korea Garden Show Designer's Garden (2016년 코리아가든쇼 작가정원의 식물 의미에 관한 연구)

  • Lee, Chung-Hee;Jin, Hye-Young;Lee, You-Mi;Song, Yu-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.41-53
    • /
    • 2017
  • This study was performed to determine what the plant material were selected to reflect in the 2016 Korea Garden Show designer's garden. It was analyzed that plant material was used to display the theme of the garden and to create a specific space. Under the given theme of 'K-Garden, Shinhallyu Garden(new style garden culture) with the most Korean taste', the plants were used to highlight the theme in two types: 'representation' and 'expression'. There were two 'representation' gardens that imitate a particular space of Korean taste and four 'expression' gardens that showcase the designer's thoughts with abstract concepts and concrete objects. Three gardens included both types of garden. The way of revealing the subject with plants was used more for 'expression' than for 'representation'. There were eleven spaces for 'representation' of the Korean taste, a vegetable garden, faucet, pond, field, nature, a Hanok court garden, groves of bamboo, tile roof, stone wall, rock and backyard of a Hanok connected to the mountain. The planting material was used in two ways: reflecting only the ecological characteristics of the plant, and considering the ecological and visual characteristics together. Vegetation plantings reflecting the ecological characteristics were observed in all eleven spaces. Nine of the spaces reflected the growth environment of the plants, but the other two did not reflect the ecological characteristics of the plants, unlike the designer's intention. In the case of the four spaces that considered the ecological and visual characteristics together, color and size were considered visual characteristics. The plants in the seven spaces that included 'expression' as the theme were selected to reflect the visual characteristics in the order of color, shape, texture, and size, rather than reflecting ecological characteristics. A group planting method was applied. When the plants were used as materials for creating space, Norman(1989) analyzed three enclosure factors(overhead, vertical, ground plane). Only two deciduous trees were used in the overhead plane while five species of evergreen shrubs and thirty species of various deciduous plants were used in the vertical plane. There were forty-five species (nine trees and thirty-six herbaceous plants) forming the ground plane, and various herbaceous plants were utilized without duplication in each garden. The designer's garden of the Garden Show played a role in introducing new groundcover plants to the public. Three of the nine gardens did not include ornamental plants, and the use of decorative plants in other gardens was few compared to the number of plantings. In the Korea Garden Show designer's garden, most of the plants were being used with the intention of exposing the theme or architectural uses. In the 2016 Korea Garden Show designer's garden, many species of plants were used as materials for showcasing themes rather than for creating spaces. Also, the method of 'expression' was used more than the method of 'representation' in order to highlight the theme. This indicates that the planting materials reflect visual characteristics such as color, shape, texture, size rather than ecological characteristics.

The Planting and Occurrence Status of Exotic Plants of the Folk Village as National Cultural Heritage - Focus in Hahoe.Yangdong.Hangae Villages - (국가지정 문화재 민속마을의 외래식물 식재 및 발생현황 - 하회.양동.한개마을을 대상으로 -)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Yun-Hee;Park, Kyung-Uk;Byun, Moo-Sup;Huh, Joon;Choi, Yung-Hyun;Shin, Sang-Sup;Lee, Hyun-Woo;Kim, Hyo-Jung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.1-19
    • /
    • 2013
  • This study was carried out to analyze distribution situation of alien plants and to propose management plan in the 3 Folk village in Gyeongsangbuk-do which is Cultural property designated by the State; Hahoe, Yangdong and Hangae. This research is for improve of sincerity of historical site and provide basic information which use about administration of preservation. The results are as follows. 1. Overall flora and alien plants appearance The total flora in the 3 folk villages were listed total 752 taxa including 127 families, 430 genera, 614 species, 5 subspecies, 100 varieties and 33 forms. Among them, woody plants take 263 taxa(35.0%) and herbaceous plants take 489 taxa (65.0%). Flora in the Hahoe, Yangdong and Hangae village were total 534, 479 taxa and 408 taxa and exotic plant index was 30.1%, 38.2% and 37.0% respectively. In types of exotic plants, ornamental exotic plants were 135 taxa, deciduous exotic plants were 21 taxa, cultivating exotic plants were 64 taxa, and naturalized exotic plants were 80 taxa and those result lead that the ornamental exotic plants is the highest ratio. According to the villages, Hahoe village had 161 taxa(30.1%), Yangdong Village had 183 taxa(38.2%), and Hangae village had 151 taxa(37.0%) that Yangdong village showed the most number of exotic plants. 2. Planting of landscape exotic plants in the unit cultural assets Meanwhile, Ornamental exotic plants in old house's gardens in Andong Hahoe village which is designated as a unit assets, those are total 30 taxa; followed by the Okyeon house(8 taxa) is highest and the Yangjindang(7), the Hadong house(6) and the Chunghyodang(5). Magnolia denudata appears the most as for 4 times and Campsis grandiflora etc. each took 2 times. Based on the Yangdong village, Gyeongju, that are found total 51 taxa; followed by the Dugok house(16 taxa) the Sujoldang(14), the Mucheondang(13), and the Sangchunheon (12). High appearance rate of ornamental exotic plants were Viburnum opulus for. hydrangeoides, Lycoris squamigera, Caragagna sinica and Magnolia denudata etc. Based on the Hangae village, Seongju, that are designated total 62 taxa; followed by the Jinsa house(35 taxa), the Gyori house(25), the Hanju head family house(20), and the Hahoe house(16). Taxa with high appearance rates were Caragana sinica, Juniperus chinensis var. horizontalis, Magnolia denudata, Viburnum opulus for. hydrangeoides, Chaenomeles speciosa etc. 3. Problems of exotic plant landscapes in the outer spaces of the folk villages Problems of exotic plant landscapes in the outer spaces of the Hahoe village are as follows. In lower of the Mansongjeong forest, Ambrosia artemisifolia, which are ecosystem disturbance plants designated by the Ministry of Environment, live with high dominance value. This should be have a remove with Sicyos angulatus immediately. In the Nakdong river bed around the Mansongjeong forest is covered with a riparian vegetation forest belt of Robinia pseudoacacia L. forest, Populus nigra var. italic community, and Populus x tomentiglandulosa community colony. Based on the Yangdong village, the planted or naturally distributed Ailanthus altissima colony, sporadically distributed Robinia pseudoacacia as well as Amorpha fruticosa are detected all over the village and ecotones. Based on the Hangae village, Ailanthus altissima and Robinia pseudoacacia are sporadically distributed around the village and there is a sign of spreading. similarity of exotic plantsis 47.0% to 48.6% and a reason why this happened is all of research site in Gyeongsanbuk-do and that is why growth norm of plant is similar, exotic plant which is sales for ornamental and it infer to require related countermeasure of each villages and joint related countermeasure.

Anatomical Studies on Root Formation in Hypocotyl and Epicotyl Cuttings of Woody Plants (임목(林木)의 배축(胚軸) 및 유경삽수발근(幼茎揷穗発根)의 해부학적(解剖学的) 연구(研究))

  • Choi, Man Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.1-30
    • /
    • 1981
  • The origin and development of adventitious roots was studied using hypocotyl and epicotyl cuttings of 34 species, 24 genus of woody plants. These cuttings obtained from young seedlings cultured in vials containing distilled water only. The several characteristics of cuttings materials studied are shown in Table 1. The results are summerized as follows: 1. The circumference shapes of cross-sections of hypocotyl and epicotyl cuttings can be divided into six categories, namely, round, irregular round, ellipse, irregular ellipse, square, and triangle. Species differences within a genus did not show any difference of hypocotyl and epicotyl cross-sections shape, however, a noticeable variation among genus or higher taxa. 2. The arrangements of vascular bundles in the cross-sections of hypocotyls or epicotyls were almost all collateral types and generally showed generic characteristics differing one to the other. However, there were some variations between species within the genus. Six models of vascular bundle arrangement were proposed for all the above speices. 3. The rooting portions of hypocotyl and epicotyl cuttings in this experimental materials can be grouped as follows: (1) Interfascicular parenchyma; (Thuja orientalis. T. orientalis for. sieboldii, Acer microsieboldianum, A. palmatum, A. saccharinum, Cercis chinensis, Lespedeza bicolor, Magnolia obovata, M. sieboldii, Mallotus japonicus, Staphylea bumalda) (2) Cambial and phloem parenchyma: (Chamaecyparis obtusa, C. pisifera, Albizzia julibrissin, Buxus microphylla var. Koreana, Cereis chinensis, Euonymus japonica, Firmiana platanifolia, Lagerstroemia indica, Ligustrum salicinum, L. obtusifolium, Magnolia kobus, M. obovata, Mallotus japonicus, Morus alba, Poncirus trifoliata, Quercus myrsinaefolia, Rosa polyantha, Styrax japonica, Styrax obassia) (3) Primary ray tissues; (Euonymus japonica, Styrax japonica) (4) Leaf traces; (Quercus acutissima, Q. aliena) (5) Cortex parenchyma; (Ailanthus altissima) (6) Callus tissues; (Castanea crenata, Quercus aliena, Q. myrsinaefolia, Q. serrata) 4. As a general tendency throughout the species studied, in hypocotyl cuttings, the adventitious root primordia were originated from the interfascicular parenchyma tissue, however, leaf traces and callus tissues were contributed to the root primordia formation in epicotyl cuttings. The hypocotyl cuttings of Ailanthus altissima exhibited a special performance in the root primordia formation, this means that cortex parenchyma was participated to the origin tissue. And in Firmiana platanifolia, differening from the other most species, the root primordia were formed at the phloem parenchyma adjacent outwardly to xylem tissue of vascular bundle system as shown photo. 48. 5. All the easy-to, or difficult-to root species developed adventitious roots in vials filled with distilled water. In the difficult-to-root species, however, root formations seemed to be delayed because they almost all had selerenchyma or phloem fiber which gave some mechanical hindrance to protrusion of root primordia. On the other hand, in the easy-to-root species they seemed to form them more easily because they did not have the said tissues. The rooting portions between easy-to-root and difficult-to-root species have not clearly been distinguished, and they have multitudinous variations. 6. The species structured with the more vascular bundles in number compared with the less vascular bundles exhibited delayed rooting. In the cuttings preparation, the proximal end of cuttings was closer to root-to-stem transition region, the adventitious root formation showed easier. 7. A different case occured however with the mature stem cuttings, in both the needle-leaved and the broad-leaved species. In the hypocotyl cuttings, parenchymatous tissues sited near the vascular bundles become the most frequent root forming portions in general and relevant distinctions between both species were hardly recognizable. 8. In the epicotyl cuttings, root primordia originated mainly in leaf traces in connection with cambial and phloems or callus tissues itself. In the hypocotyl cuttings, interfascicular parenchyma was the most frequent portion of the root primordia formation. The portions of root primordia had more connection with vascular cambium system, as the tissues were continuing to be developed.

  • PDF

A Morphological Study of Bamboos by Vascular Bundle Sheath (대나무류(類)의 유관속초(維管束鞘)에 의(依)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.13-47
    • /
    • 1975
  • Among the many species of bamboo, it is well known that the dwarf-type is widely distributed in the tropical regions, and the slender type in temperated zone. In the temperated zone the trees have extensively differentiated into one hundred species in 50 genera. In many oriental countries, the bamboo wood is being used as a material for construction and for the manufacture of technical instruments. The bamboo shoot is also regarded as a good and delicious edible resource. Moreover, recent medical investigation verifies that the sap of certain species of the bamboo is an antibiotic effect against cancer. Fortunately, it is very easy to propagate the bamboo trees by using cutting from southeastern Asian countries. This important resource can further be used as a significant source of pulp, which is becoming increasingly important. The classification system of this significant resource has not been completely established to date, even though its importance has been emphasized. Initiated by Canlevon Linne in the 18th century, a classification method concerning the morphological characteristics of flowers was the first step in developing a classification. But it was not an easy task to accomplish, because this type of classification system is based on the sexual organs in bamboo trees. Because the bamboo has a long life cycle of 60-120 years and classification according to this method was very difficult as the materials for the classification are not abundant and some species have changed, even though many references related to the morphological classification of bamboo trees are available nowadays. So, the certification of bamboo trees according to the morphological classification system is not reasonable for us. Consequently, the classification system of bamboo trees on the basis of endomorphological characteristics was initiated by Chinese-born Liese. And classification method based on the morphological characteristics of the vascular bundle was developed by Grosser. These classification methods are fundamentally related to Holltum's classification method, which stressed the morphology of the ovary. The author investigated to re-establish a new classification method based on the vascular sheath. Twenty-six species in 11 genera which originated from Formosa where used in the study. The results obtained from the investigation were somewhat coordinated with those of Crosser. Many difficulties were found in distinguishing the species of Bambusa and Dendrocalamus. These two species were critically differentiated under the new classification system, which is based on the existence of a separated vascular bundle sheath in the bamboo. According to these results, it is recommended that Babusa divided into two groups by placing it into either subspecies or the lower categories. This recommendation is supported by the observation that the evolutional pattern of the bamboo thunk which is from outward to inward. It is also supported by the viewpoint that the fundamental hypothesis in evolution is from simple to complex. There remained many problems to be solved through more critical examination by comparing the results to those of the classification based on the sexual organs method. The author observed the figure of the cross-sectional area of vascular trunk of bamboo tree and compared the results with those of Grosser and Liese, i.e. A, $B_1$, $B_2$, C, and D groups in classification. Group A and $B_2$ were in accordance with the results of those scholars, while group D showed many differences, Grosser and Liese divided bamboo into "g" type and "h" type according to the vascular bundle type; and they included Dendrocalamus and Bambusa in Group D without considering the type of vascular bundle sheath. However, the results obtained by the author showed that Dendrocalamus and Bambusa are differentiated from each other. By considering another group, "i" identified according to the existence of separated vascular bundle sheath. Bambusa showed to have a separated vascular bundle sheath while Dendrocalamus does not have a separated vascular bundle sheath. Moreover, Bambusa showed peculiar characteristics in the figure of vascular development, i.e., one with an inward vascular bundle sheath and the other with a bivascular bundle sheath (inward and outward). In conclusion, the bamboo species used in this experiment were classified in group D, without any separated vascular bundle sheath, and in group E, with a vascular bundle sheath. Group E was divided into two groups, i.e., and group $E_1$, with bivascular sheath, and group $E_2$, with only an inward vascular sheath. Therefore, the Bambusa in group D as described by Grosser and Liese was included in group E. Dendrocalamus seemed to be the middle group between group $E_l$ and group $E_2$ under this classification system which is summarized as follows: Phyllostachys-type: Group A - Phyllostachys, Chymonobambus, Arundinaria, Pseudosasa, Pleioblastus, Yashania Pome-type: Group $B_2$ - Schizostachyum, Melocanna Hemp-type: Group D - Dendrocalamu Bambu-type: Group $E_1$ - Bambusa ghi.

  • PDF