• Title/Summary/Keyword: 모호정수

Search Result 28, Processing Time 0.019 seconds

Creating Virtual $L_2$ Using a Combination of $L_1$ and $L_1$/ $L_2$ Receivers (GPS $L_1$$L_1$/ $L_2$ 수신기 조합을 이용한 가상$L_2$ 산출)

  • 홍정수;박운용;이용희;임영빈
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.105-109
    • /
    • 2004
  • 장시간 동안 모호정수를 해석하는 것은 결과의 정확도와 전체적인 변형 모니터링 시스템의 신뢰도에 심각한 영향을 미칠 수 있는 문제이다. 그러므로 이주파수신기를 사용해 모호정수 해석의 가속화된 방식이 필요하게 되었다. 여기에서 묘사한 것은 가상의 이주파 데이터를 산출하여, 이 모호정수 해석을 빠르게 실시할 수 있도록 하는 방법 중의 하나이다. 본 논문은 현장테스트와 이론에 근거한 연구를 통해 산출하였으며, real과 virtual L$_2$ 데이터는 static과 OTF 방식에 의한 전처리과 후처리과정을 통해 비교하였다. 일ㆍ이주파 수신기를 혼용으로 사용하여 일주파 위상에 대해 더욱 빠른 모호정수를 분석하기 위해 virtual L$_2$를 생성하여 해석방법과 데이터 처리에 관한 연구를 하고자 한다. 방법을 설명하기 위한 이론을 개략적으로 기술하였으며, 몇몇 시도적인 결과를 kinematic과 static 방법에서 획득하였다. 초기의 결과는 주기의 몇 백분의 1 또는 천만분의 1일 때 아주 우수한 것으로 증명되고 있다.

  • PDF

Effects of ionospheric disturbances caused by solar storm on rapid-static positioning accuracy (태양폭풍에 의한 전리층 교란이 신속정지측위 정확도에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.651-657
    • /
    • 2011
  • There exists a high correlation between the ionospheric delays and the integer ambiguity in GPS observation equation, so that the sufficient time span is required to revolve the integer ambiguity. This means that the ambiguity resolution plays a key role especially in rapid-static positioning mode. To analyze the effect of ionospheric disturbances on the positioning accuracy, 02/19/2011 day of dataset was selected processed in rapid-static positioning mode. The total of 141 30-minute sessions were processed, i.e., the estimation procedure started every 10 minutes, and the time-to-fix information of each data interval is obtained. In this study, the analysis is performed by comparing the time-to-fix with the magnitudes of ionospheric delays. The computed correlation coefficient between the time-to-fix and the magnitudes of ionospheric delays is 0.31, which indicates the ionospheric disturbances affect the positioning accuracy in rapid-static positioning mode. Therefore, it is required to collect and process sufficient data when the GPS surveying is performed in unfavorable ionospheric conditions.

Development of GPS-RTK Algorithm for Improving Geodetic Performance in Short Baseline (단기선 측지 성능 향상을 위한 GPS-RTK 알고리즘 개발)

  • Choi, Byung-Kyu;Lee, Sang-Jeong;Park, Jong-Uk;Baek, Jeong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.461-467
    • /
    • 2009
  • Relative positioning technique by GPS that can obtain the high positioning accuracy has been used for generation of high precision positioning with elimination or the reduction of the common errors. This paper gives some algorithms for RTK and considers the filter to estimate the positioning information and integer ambiguities at each epoch in the whole algorithms. The extended kalman filter has been employed to estimate the state parameters and the modified LAMBDA to resolve the integer ambiguities. The data processing was performed by GPS single frequency and dual frequency in short baseline. The verification procedure of these positioning compared with results from Bernese 5.0 software. We presented some statistic values on positioning errors and the rates of integer ambiguity resolution.

Accuracy Analysis of Absolute Positioning by GNSS (GNSS에 의한 절대측위의 정확도 해석)

  • Lee, Yong Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2601-2610
    • /
    • 2013
  • The main limiting factors of Precise Point Positioning(PPP) accuracy are errors in broadcast satellite orbits, clock errors, and the others, which are receiver-dependent errors(ionospheric, tropospheric refraction, multipath, and tides, etc.). Therefore, to facilitate high precision PPP, precise orbits/clocks corrections, the receiver-dependent errors corrections have to apply to multi frequency GNSS measurements for an ionosphere free combination and integer ambiguity resolution in real-time. Currently, there are many Analysis Centers, which offer the precise corrections stream computed in real-time using the global or regional GNSS tracking network. The goles of this research considered performances of the real-time static PPP with using RTCM corrections from NTRIP casters. For this, the corrections streams of Analysis Centers received via NTRIP does apply to GNSS data of check points individually, as well as jointly, in accordance with various session lengths. After that, have compared the PPP results from the corrections streams with each other, and with Standard Point Positioning(SPP) results.

A Novel Frequency Offset Estimation Algorithm for Chirp Spread Spectrum Based on Matched Filter (정합필터 기반의 Chirp Spread Sprectrum을 위한 새로운 주파수 오프셋 추정 알고리즘)

  • Kim, Yeong-Sam;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.1-7
    • /
    • 2010
  • A new frequency offset estimation algorithm for chirp spread spectrum based on matched filter is proposed. Generally, the differential phase between successive symbols is used for the conventional frequency offset estimation algorithm. However, if the conventional frequency offset estimation algorithm is used for CSS, phase ambiguity arises because of long symbol duration and guard time. The phase ambiguity causes performance degradation of matched filter since the received signal is corrupted by the integer frequency offset. In this paper, we propose a new frequency offset estimation algorithm which separates integer and fractional frequency offset estimation for removing the phase ambiguity. The proposed algorithm estimates the integer frequency offset by using differential phase between matched filtering results of sub-chirps and successive symbols. Then, the fractional frequency offset is estimated by using the differential phase between successive symbols Simulation results show that the proposed algorithm well removes the phase ambiguity, and have almost same estimation performance compared with conventional one when there is not the phase ambiguity.

Study on the Improvement of the Positioning Accuracy for Inverted RTK Using FARA (FARA를 이용한 Inverted RTK 측위 정확도 향상에 대한 연구)

  • Choi Byung Kygu;Lim Sam Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2004
  • In order to improve real-time positioning accuracy, a number of methods have been tested and one of those is the inverted RTK(Real-time kinematic) that gives a precise positioning by handling carrier phase measurements. For the inverted RTK positioning, it needs the L1 phase measurement at least for 1~2 minutes and the additional reference stations/communication system and a data processing server are required. The L1 code and carrier phase measurements for real-time application are used simultaneously and then Kalman filter is applied to estimate integer ambiguities. Double differenced integer ambiguities are resolved by utilizing the FARA(Fast Ambiguity Resolution Approach). In this paper, we propose the method to improve the positioning accuracy and performed the field tests for several baselines from DAEJ reference station in KAO(Korea Astronomy Observatory).

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

Stability Assessment of FKP System by NGII using Long-term Analysis of NTRIP Correction Signal (NTRIP 보정신호 분석을 통한 국토지리정보원 FKP NRTK 시스템 안정성 평가)

  • Kim, Min-Ho;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.321-329
    • /
    • 2013
  • Despite the advantage of unlimited access, there are insufficient studies for the accuracy and stability of FKP that blocks the spread of the system for various applications. Therefore, we performed a long-term analysis from continuous real-time positioning, and investigated the error characteristics dependent on the size and the surrounding environment. The FKP shows significant changes in the positioning accuracy at different times of day, where the accuracy during daytime is worse than that of nighttime. In addition, the size and deviation of FKP correction may change with the ionospheric conditions, and high correlation between ambiguity resolution rate and the deviation of correction was observed. The receivers continuously request the correction information in order to cope with sudden variability of ionosphere. On the other hand, the correction information was not received up to an hour in case of stable ionospheric condition. It is noteworthy that the outliers of FKP are clustered in their position with some biases. Since several meters of errors can be occurred for kinematic positioning with FKP, therefore, it is necessary to make appropriate preparation for real-time applications.

Effect of Memory Disambiguation for ILP Microprocessors (ILP 마이크로세서에서 메모리 주소 모호성 제거의 성능 영향)

  • 정회목;양병선;문수묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.694-696
    • /
    • 1998
  • ILP마이크로세서를 위한 스테쥴링 과정에서 메모리 명령어가 프로그램의 임계 경로로에 존재할 경우에 이의 스케쥴링은 성능 향상에 중요한 문제 중에 하나이다. 메모리 명령어의 원활한 코드 이동을 위해서는 장애가 되는 명령어들의 메모리 주소간의 의존성의 분석을 필요로 한다. 본 논문에서는 컴파일 시간에 메모리 주소간의 의존성 분석을 통한 성능 향상도를 VLIW환경 하에서 비교한다. 실험결과. 컴파일 시간에 메모리 주소 모호성 제거기를 사용한 경우 16ALU프로세서에서 정수 벤치마크 프로그램에 대해서 기하 평균으로 약 3.6%의 성능 향상이 가능하다.

  • PDF

Accuracy Analysis of Network-RTK(VRS) for Real Time Kinematic Positioning (실시간 이동 측위 적용을 위한 Network-RTK(VRS) 정확도 분석)

  • No, Sun-Joon;Han, Joong-Hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • As the demand on the precise positioning for the moving objects has been increased in the various industry field, many studies have been conducted to analyze real time kinematic technique and its practical usage. The main purpose of this study is to analyze the possibility of Network-RTK(VRS) in real-time kinematic positioning. So, the accuracy analysis has been conducted by comparing the Network-RTK(VRS) position with respect to the RTK position. As a result, Network-RTK(VRS) based on kinematic positioning has centimeter level of RMS in the ideal environment compared to RTK positioning. However, when the integer ambiguities was lost, the accuracy of Network-RTK was meter level. At that time, the quality value has been changed dramatically and shows big correlation with accuracy. When the position and height quality values are within 0.1m, the RMS of the horizontal and vertical position appears better than 10cm and 20cm, respectively. However, if the quality value is over 0.1m, the RMS increases to larger than a meter. Therefore, it is recommended to check the quality value when conducting Network-RTK(VRS) kinematic positioning to get the centimeter level accuracy.