• Title/Summary/Keyword: 모폴로지 필터

Search Result 50, Processing Time 0.023 seconds

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

Facial Contour Extraction in PC Camera Images using Active Contour Models (동적 윤곽선 모델을 이용한 PC 카메라 영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.633-638
    • /
    • 2005
  • The extraction of a face is a very important part for human interface, biometrics and security. In this paper, we applies DCM(Dilation of Color and Motion) filter and Active Contour Models to extract facial outline. First, DCM filter is made by applying morphology dilation to the combination of facial color image and differential image applied by dilation previously. This filter is used to remove complex background and to detect facial outline. Because Active Contour Models receive a large effect according to initial curves, we calculate rotational degree using geometric ratio of face, eyes and mouth. We use edgeness and intensity as an image energy, in order to extract outline in the area of weak edge. We acquire various head-pose images with both eyes from five persons in inner space with complex background. As an experimental result with total 125 images gathered by 25 per person, it shows that average extraction rate of facial outline is 98.1% and average processing time is 0.2sec.

  • PDF

Intensity Correction of 3D Stereoscopic Images Using Binarization-Based Region Segmentation (이진화기반 영역분할을 이용한 3D입체영상의 밝기보정)

  • Kim, Sang-Hyun;Kim, Jeong-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.265-270
    • /
    • 2011
  • In this paper, we propose a method for intensity correction using binarization-based region segmentation in 3D stereoscopic images. In the proposed method, 3D stereoscopic right image is segmented using binarizarion. Small regions in the segmented image are eliminated. For each region in right image, a corresponding region in left image is decided through region matching using correlation coefficient. When region-based matching, in order to prevent overlap between regions, we remove a portion of the area closed to the region boundary using morphological filter. The intensity correction in left and right image can be performed through histogram specification between the corresponding regions. Simulation results show the proposed method has the smallest matching error than the conventional method when we generate the right image from the left image using block based motion compensation.

Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships (자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별)

  • Hyun-Woo Lee;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.410-418
    • /
    • 2023
  • Recently, advancements and commercialization in the field of maritime autonomous surface ships (MASS) has rapidly progressed. Concurrently, studies are also underway to develop methods for automatically surveying the condition of various on-board equipment remotely to ensure the navigational safety of MASS. One key issue that has gained prominence is the method to obtain values from analog gauges installed in various equipment through image processing. This approach has the advantage of enabling the non-contact detection of gauge values without modifying or changing already installed or planned equipment, eliminating the need for type approval changes from shipping classifications. The objective of this study was to identify a dynamically changing indicator needle within noisy images of analog gauges. The needle object must be identified because its position significantly affects the accurate reading of gauge values. An analog pressure gauge attached to an emergency fire pump model was used for image capture to identify the needle object. The acquired images were pre-processed through Gaussian filtering, thresholding, and morphological operations. The needle object was then identified through Hough Transform. The experimental results confirmed that the center and object of the indicator needle could be identified in images of noisy analog gauges. The findings suggest that the image processing method applied in this study can be utilized for shape identification in analog gauges installed on ships. This study is expected to be applicable as an image processing method for the automatic remote survey of MASS.

A license plate detection method based on contour extraction that adapts to environmental changes (주변 환경 변화에 적응하는 윤곽선 추출 기반의 자동차 번호판 검출 기법)

  • Pyo, Sung-Kook;Lee, Gang-seong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.31-39
    • /
    • 2018
  • In this paper, we proposed a license plate detection method based on contour extraction that adapts to environmental changes. The proposed method extracts contour lines using DoG (Difference of Gaussian) to remove unnecessary noise parts in the contour extraction process. Binarization was applied in ugly outline images, and erosion and dilation operations were used to emphasize the contour of the character part. Then, only the outline of the ratio of the characters of the plate was extracted through the ratio of the width and height of the characters. And the case where the outline is the longest is estimated by estimating the characters of the license plate. For the experiment, we applied 130 image data to license plate on the front of the vehicle, oblique environment, and environment images with various backgrounds. I also experimented with motorcycle images of different license plate patterns. Experimental results showed that the detection rate of the oblique image was 93% and that of the various background environment was 70% in the motorcycle image but 98% in the front image.

GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image (드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정)

  • Jin, Yu-Jin;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.90-100
    • /
    • 2017
  • The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Pace and Facial Element Extraction in CCD-Camera Images by using Snake Algorithm (스네이크 알고리즘에 의한 CCD 카메라 영상에서의 얼굴 및 얼굴 요소 추출)

  • 판데홍;김영원;김정연;전병환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.535-542
    • /
    • 2002
  • 최근 IT 산업이 급성장하면서 화상 회의, 게임, 채팅 등에서의 아바타(avatar) 제어를 위한 자연스러운 인터페이스 기술이 요구되고 있다. 본 논문에서는 동적 윤곽선 모델(active contour models; snakes)을 이용하여 복잡한 배경이 있는 컬러 CCD 카메라 영상에서 얼굴과 눈, 입, 눈썹, 코 등의 얼굴 요소에 대해 윤곽선을 추출하거나 위치를 파악하는 방법을 제안한다. 일반적으로 스네이크 알고리즘은 잡음에 민감하고 초기 모델을 어떻게 설정하는가에 따라 추출 성능이 크게 좌우되기 때문에 주로 단순한 배경의 영상에서 정면 얼굴의 추출에 사용되어왔다 본 연구에서는 이러한 단점을 파악하기 위해, 먼저 YIQ 색상 모델의 I 성분을 이용한 색상 정보와 차 영상 정보를 사용하여 얼굴의 최소 포함 사각형(minimum enclosing rectangle; MER)을 찾고, 이 얼굴 영역 내에서 기하학적인 위치 정보와 에지 정보를 이용하여 눈, 입, 눈썹, 코의 MER을 설정한다. 그런 다음, 각 요소의 MER 내에서 1차 미분과 2차 미분에 근거한 내부 에너지와 에지에 기반한 영상 에너지를 이용한 스네이크 알고리즘을 적용한다. 이때, 에지 영상에서 얼굴 주변의 복잡한 잡음을 제거하기 위하여 색상 정보 영상과 차 영상에 각각 모폴로지(morphology)의 팽창(dilation) 연산을 적용하고 이들의 AND 결합 영상에 팽창 연산을 다시 적용한 이진 영상을 필터로 사용한다. 총 7명으로부터 양 눈이 보이는 정면 유사 방향의 영상을 20장씩 취득하여 총 140장에 대해 실험한 결과, MER의 오차율은 얼굴, 눈, 입에 대해 각각 6.2%, 11.2%, 9.4%로 나타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of

  • PDF

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.