• Title/Summary/Keyword: 모션 캡쳐

Search Result 177, Processing Time 0.022 seconds

A Study on the Correction of Face Motion Recognition Data Using Kinect Method (키넥트 방식을 활용한 얼굴모션인식 데이터 제어에 관한 연구)

  • Lee, Junsang;Park, Junhong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.513-515
    • /
    • 2019
  • Techniques to recognize depth values using Kinect infrared projectors continue to evolve. Techniques to track human movements are being developed from the Marcris method to the Bimarris method. Capture of facial movement using Kinect has disadvantages that are not sophisticated. In addition, a method to control the gestures and movements on the face in real time requires much research. Therefore, this paper proposes a technique to create natural 3D image contents by studying technology to apply and control branding technology to extracted face recognition data using Kinect infrared method.

  • PDF

3D Pose Estimation from Selective View for 3D Volumetric Data Deformation (3 차원 볼류메트릭 데이터 변형을 위한 선택적 시점에서의 3 차원 포즈 추정)

  • Lee, Sol;Kim, Ji-Hyun;Park, Jung-Tak;Park, Byung-Seo;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.156-157
    • /
    • 2022
  • 본 논문에서는 선택적 시점에서의 2D 포즈 추정(pose estimation) 결과를 정합 하여 정확도 높은 3D 스켈레톤(skeleton)을 만들어 낸다. 여러 프레임의 3D 데이터를 10 도 간격으로 36 방향에서 투영한 뒤, 2D 포즈 추정 결과 신뢰도가 높은 시점에서의 결과만을 선별하여 3 차원으로 정합 한다. 이때 사용하는 시점의 개수를 달리하며 정확도에 미치는 영향을 분석하여 실험적으로 정확도가 높은 최소의 시점 개수를 정하였다. 또한, 정합 한 3D 뼈대를 모션 캡쳐(motion capture) 센서와 비교하여 제안하는 알고리즘에 의해 3D 포즈 추정의 정확도가 향상되는 것을 확인했다.

  • PDF

An Exploration on the Piezoelectric Energy Harvesting Clothes based on the Motion Analysis of the Extremities (인체의 사지 동작 분석에 기반한 압전 에너지 수확 의류의 탐색적 연구)

  • Park, Seon-Hyung;Cho, Hyun-Seung;Yang, Jin-Hee;Yun, Dae-Yeon;Yun, Kwang-Seok;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2013
  • Recently, researches of piezoelectric energy harvesting were tried and in this study, a piezoelectric energy harvesting clothes was developed. First, piezoelectric energy harvesting zone on the extremities were drawn by 3D motion capturing and as a result, the hip, the elbow, and the knee were determined. A new structure of piezoelectric harvester was developed for appling to clothes. Because it needed to be flexible and sensitive for human body, the 2 layer stacked structure was proposed. A prototype of seamless garment was designed for a harvesting clothes because it needed to be body-tight and not to restrict the movement. High peak-to-peak voltages were acquired from the energy harvesting clothes.

  • PDF

An Efficient Generation of Walking and Running Motion on Various Terrains (다양한 지형에서의 걷기와 달리기 동작의 효율적 생성)

  • Song Mi-Young;Cho Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.187-196
    • /
    • 2006
  • In 3D animation most people adjust the moving motion of their characters on various terrains by using motion data acquired with the motion capture equipment. The motion data can be used to present real human motions naturally, but the data must be captured again to apply to the different terrains from those given at acquiring mode. In addition, there would be a difficulty when applying the data to other characters, in that case the motion data must be captured newly or the existing motion data must be heavily edited manually. In this paper we propose a unified method to generate human motions of walking and running for various terrains such as flat plane, inclined plane, stairway and irregular face. With these methods we are able to generate human motions controlled by the parameters : body height, moving speed, stride, etc. In the proposed methods, the positions and angles of joint can be calculated by using inverse kinematics, and we calculate the trajectory of the swing leg and pelvis according to the cubic spline. With these methods we were presented moving motions using a model of a human body.

Generation of Adaptive Walking Motion for Uneven Terrain (다양한 지형에서의 적응적인 걷기 동작 생성)

  • 송미영;조형제
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1092-1101
    • /
    • 2003
  • Most of 3D character animation adjusts the gait of their characters for various terrains, using motion capture data through the motion capture equipments. This motion capture data can be naturally presented as real human motions, which are to be adjusted according to the various types of terrain. In addition, there would be a difficulty applying motion capture data for other characters in which the motion data will be captured again or edited for the existing motion data. Therefore, this paper proposes a method that is to generate walking motion for various terrains, such as flat, inclined plane, stair, and irregular face, and a method that is to calculate the trajectory of the swing leg and pelvis. These methods are able to generate various gaits controlled by the parameters of body height, walking speed, stride, etc. In addition, the positions and angles of joint can be calculated by using inverse kinematics, and the cubic spline will be used to calculate the trajectory of the joint.

Digital Motion Capture for Types and Shapes of 3D Character Animation (디지털 모션 캡쳐(Motion Capture)를 위한 3D캐릭터 애니메이션의 종류별, 형태별 모델 분류)

  • Yun, Hwang-Rok;Ryu, Seuc-Ho;Lee, Dong-Lyeor
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.102-108
    • /
    • 2007
  • Among culture industry that greet digital generation and is observed 21th century the most representative game industry latest is caught what and more interest degree is rising. 2D and 3D animation accomplish continuous growth and development depending action expression along with development of computer technology, and 2D and 3D animation practical use extent are trend that is widening the area in TV, movie, GAME industry etc. through computer hardware and fast change of software technology. The trend of latest game graphic is trend that the weight is changing from 2D to 3D by 3D game and activation of 3D game character that raise player's immersion stuff and Control in 2D's simplicity manufacturing game balance for one side. This treatise that is reality of 3D game character to classify kind of (Motion Capture) and 3D character animation, form model the sense put. Recognize that is overview and reality of 3D game character first for this about example, and is considered to efficiency is high game industry and digital contents industry hereafter by proposing kind model classification of 3D game character animation, form model classification data and character animation manufacture process that application is possible at fast time and effect in 3D character animation application are big.

Markerless Motion Capture Algorithm for Lizard Biomimetics (소형 도마뱀 운동 분석을 위한 마커리스 모션 캡쳐 알고리즘)

  • Kim, Chang Hoi;Kim, Tae Won;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.136-143
    • /
    • 2013
  • In this paper, a algorithm to find joints of a small animal like a lizard from the multiple-view silhouette images is presented. The proposed algorithm is able to calculate the 3D coordinates so that the locomotion of the lizard is markerlessly reconstructed. The silhouette images of the lizard was obtained by a adaptive threshold algorithm. The skeleton image of the silhouette image was obtained by Zhang-Suen method. The back-bone line, head and tail point were detected with the A* search algorithm and the elimination of the ortho-diagonal connection algorithm. Shoulder joints and hip joints of a lizard were found by $3{\times}3$ masking of the thicked back-bone line. Foot points were obtained by morphology calculation. Finally elbow and knee joint were calculated by the ortho distance from the lines of foot points and shoulder/hip joint. The performance of the suggested algorithm was evaluated through the experiment of detecting joints of a small lizard.

A Movement Tracking Model for Non-Face-to-Face Excercise Contents (비대면 운동 콘텐츠를 위한 움직임 추적 모델)

  • Chung, Daniel;Cho, Mingu;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.181-190
    • /
    • 2021
  • Sports activities conducted by multiple people are difficult to proceed in a situation where a widespread epidemic such as COVID-19 is spreading, and this causes a lack of physical activity in modern people. This problem can be overcome by using online exercise contents, but it is difficult to check detailed postures such as during face-to-face exercise. In this study, we present a model that detects posture and tracks movement using IT system for better non-face-to-face exercise content management. The proposed motion tracking model defines a body model with reference to motion analysis methods widely used in physical education and defines posture and movement accordingly. Using the proposed model, it is possible to recognize and analyze movements used in exercise, know the number of specific movements in the exercise program, and detect whether or not the exercise program is performed. In order to verify the validity of the proposed model, we implemented motion tracking and exercise program tracking programs using Azure Kinect DK, a markerless motion capture device. If the proposed motion tracking model is improved and the performance of the motion capture system is improved, more detailed motion analysis is possible and the number of types of motions can be increased.

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.

Simulation of Virtual Marionette with 3D Animation Data (3D Animation Data를 활용한 가상 Marionette 시뮬레이션)

  • Oh, Eui-Sang;Sung, Jung-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.1-9
    • /
    • 2009
  • A doll created by various materials is a miniature based on human model, and it has been one of components in a puppet show to take some responsibility for human's culture activity. However, demand and supply keeps on the decrease in the puppet show industry, since professional puppeteer has been reduced rapidly, and also it is difficult to initiate into the skill. Therefore, many studies related Robotic Marionette for automation of puppet show have been internationally accompanied, and more efficient structure design and process development are required for better movement and express of puppet with motor based controller. In this research, we suggest the effective way to enable to express the marionette's motion using motion data based on motion capture and 3D graphic program, and through applying of 3D motion data and proposal of simulation process, it will be useful to save time and expenses when the Robotic Marionette System is practically built.