• Title/Summary/Keyword: 모션 계획

Search Result 32, Processing Time 0.026 seconds

An application of Motion Tracking for Interactive Art (인터랙티브 아트를 위한 관람자 아바타 생성 기법)

  • Kim, Donghyun;Kim, Sangwook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.375-377
    • /
    • 2012
  • 인터랙티브아트의 상호작용이라는 관점에서 볼 때 관객과 작품이 상호작용하기 위해선 하드웨어적인 장치가 필수적으로 존재해야 한다. Kinect Sensor는 인체를 구성하는 다양한 관절의 좌표를 추출하는 기능을 통해 실시간으로 모션트래킹을 가능하게 하고 이것을 다양한 컨텐츠에 적용하여 활용 할 수 있다. 이 논문은 인체의 관절좌표를 기반으로한 사용자의 2D, 3D아바타를 생성하는 과정에 대해 기술한다. 각각의 방법은 서로 다른 제작방식과 특성을 가지고 있기 때문에 컨텐츠의 성격에 따라 적용할 수 있고 앞으로 이러한 인터랙션적인 부분과 컨텐츠 분야를 연구할 계획이다.

Task and Motion Planning for Grasping Obstructed Object in Cluttered Environment (복잡 환경에서 가로막힌 물체 잡기를 위한 작업-모션 계획의 연계)

  • Lee, Seokjun;Kim, Incheol
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.104-113
    • /
    • 2019
  • Object manipulation in cluttered environments remains an open hard problem. In cluttered environments, grasping objects often fails for various reasons. This paper proposes a novel task and motion planning scheme to grasp objects obstructed by other objects in cluttered environments. Task and motion planning (TAMP) aims to generate a sequence of task-level actions where its feasibility is verified in the motion space. The proposed scheme contains an open-loop consisting of three distinct phases: 1) Generation of a task-level skeleton plan with pose references, 2) Instantiation of pose references by motion-level search, and 3) Re-planning task based on the updated state description. By conducting experiments with simulated robots, we show the high efficiency of our scheme.

Study on the Method to Create a Pedestrian Path Using Space Decomposition based on Quadtree (쿼드트리 기반의 공간분할 기법을 활용한 경로 생성 방안에 관한 연구)

  • Ga, Chill-O;Woo, Ho-Seok;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, the target of navigation system is moving from the cars to pedestrians. Many researches are in progress regarding pedestrian navigation, However, in most cases, the path-finding is based on the existing node/link network model. which is widely used for the car navigation, and thus showing its limitation. The reasons arc that a) unlike with a car, the paths that pedestrians take arc not limited to the roads, b) pedestrians an~ not restricted in rotation or direction, and c) they can freely move within the walkable space. No alternatives have been offered yet, especially for openspaces such as a park or square. Therefore, in this research, we suggested appropriate methods to create paths that can be used in pedestrian navigation service, by using motion-planning technology, which is used in the field of robotics for planning the motion of an object, and conducted tests for their applicability.

Categorization of motion drawing for educating animation -A basic study on the development of educational model applied with principles of brain science (애니메이션 교육을 위한 모션드로잉 범주화 -뇌과학 원리를 적용한 교육모형 개발 기초연구)

  • Park, Sung Won
    • Cartoon and Animation Studies
    • /
    • s.35
    • /
    • pp.1-27
    • /
    • 2014
  • This study is a process of studying an alternative educational model and a preceding analysis process of the study where a teaching method considering the brain function, learning and creative mechanism is applied with a perspective of effectively increasing the animation drawing ability. Recently, studies in each field of study is not simply limited to one major but are attempting to produce subdivided integrated educational contents through integrated study activities with other fields. It is because for any field, it has a complex structure of humanistic experience and this is the same for artistic fields. Especially, in the field of animation, a specialized area is subdivided so when looking only at the education related to the drawing, the items required for expertise should be clarified and the development of a systematic educational method is required. Therefore in this study, a literature study result to design the educational model suitable for professional characteristics of animation education method is proposed. The study aims to conceptualize and categorize the meaning of drawing that can refine the basic ability for education of animation field to suit the characteristics of majoring field. Afterwards, the components are derived through re-established concept of drawing and categories, and this becomes the basis for the process of materializing the study goal which is the follow-up work. As a result, the components are examined by defining the meaning of drawing as the motion drawing due to the characteristics of the picture contents field, and used as a basis for planning the educational model applied with brain scientific creative-learning principles.

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Image quality and usefulness evaluaton of 3D-CBCT and Gated-CBCT according to baseline changes for SBRT of Lung Cancer (폐암 환자의 정위체부방사선치료 시 기준선 변화에 따른 3D-CBCT(Cone Beam Computed-Tomography)와 Gated-CBCT의 영상 품질 및 유용성 평가)

  • Han Kuk Hee;Shin Chung Hun;Lee Chung Hwan;Yoo Soon Mi;Park Ja Ram;Kim Jin Su;Yun In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.41-51
    • /
    • 2023
  • Purpose: This study compares and analyzes the image quality of 3D-CBCT(Cone Beam Computed-Tomography) and Gated CBCT according to baseline changes during SBRT(Stereotactic Body RadioTherapy) in lung cancer patients to find a useful CBCT method for correcting movement due to breathing Materials and methods : Insert a solid tumor material with a diameter of 3 cm into the QUASARTM phantom. 4-Dimentional Computed-Tomography(4DCT) images were taken with a speed of the phantom at period 3 sec and a maximum amplitude of 20 mm. Using the contouring menu of the computerized treatment planning system EclipseTM Gross Tumor Volume was outlined on solid tumor material. Set-up the same as when acquiring a 4DCT image using Truebeam STxTM, breathing patterns with baseline changes of 1 mm, 3 mm, and 5 mm were input into the phantom to obtain 3D-CBCT (Spotlight, Full) and Gated-CBCT (Spotlight, Full) images five times repeatedly. The acquired images were compared with the Signal-to-Noise Ratio(SNR), Contrast-to-Noise Ratio(CNR), Tumor Volume Length, and Motion Blurring Ratio(MBR) based on the 4DCT image. Results: The average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Spotlight Gated CBCT images were 13.30±0.10%, 7.78±0.16%, 3.55±0.17%, 1.18±0.06%. As a result, Spotlight Gated-CBCT images according to baseline change showed better values than Spotligtht 3D-CBCT images. Also, the average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Full Gated CBCT images were 12.80±0.11%, 7.60±0.11%, 3.54±0.16%, 1.18±0.05%. As a result Full GatedCBCT images according to baseline change showed better values than Full 3D-CBCT images. Conclusion : Compared to 3D-CBCT images, Gated-CBCT images had better image quality according to the baseline change, and the effect of Motion Blurring Artifacts caused by breathing was small. Therefore, it is considered useful to image guided using Gated-CBCT when a baseline change occurs due to difficulty in regular breathing during SBRT that exposes high doses in a short period of time

  • PDF

Motion Planning of Building Maintenance Robot System for Reducing Jerk Effect (빌트인형 BMR 시스템의 이동 중 충격완화를 위한 모션제어)

  • Lee, Seunghoon;Kang, Min-Sung;Kang, Sungpil;Hwang, Soonwoong;Kim, YoungSoo;Moon, Sung-Min;Hong, Daehie;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.368-374
    • /
    • 2013
  • Maintenance works for current high-rise buildings significantly depend on human labor, unlike other construction processes that are gradually being automated. Herein, this paper proposes robotic building maintenance system using motion control, in specific, reducing a system jerk which is directly subjected to improve the process performance and economic feasibility. The sensor for detecting straight and curvature section of the building facade, moreover rail-joint segment can be detected and be utilized for reducing jerk of the system. Analysis of the proposed system error caused by excessive vibration, e.g. jerk motion is introduced. To enhance the stability and safety of the system, herein, the strategy is proposed for enhancing the performance of the system based on anti-jerk motion control algorithm which comes out increasing the stability and sustainability of the integrated system, as well.