• Title/Summary/Keyword: 모서리 반경

Search Result 24, Processing Time 0.022 seconds

Study on through the thickness stresses in the corner radius of a laminated composite structure (복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구)

  • Kim, Sung Joon;Hwang, In Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.665-672
    • /
    • 2013
  • One of the major causes of stiffness and strength degradations in laminated composite structures is the delamination between composite layers. In most engineering applications, laminated composite structures have certain curvatures. If the curved composite structure is subjected to bending that tends to flatten the composite structures, through the thickness stresses can be generated in the thickness direction of the composites. Under normal operation open mode delamination could occur at the sites of peak interlaminar stress. This paper describes a technique to determine radial direction stress of a laminated composite structure using a curved beam. Stacking sequence effects of interlaminar stress were studied. The radial location and intensity of the open mode delamination stress were calculated and compared with the results obtained from the analytical solution and finite element method.

Verification and Suggestion of Optimization Method for Rivet Arrangement with Regard to Stress Concentration between Hole-Edge and Hole-Hole on a 2-D Plate (2차원 평판 내 구멍-모서리 및 구멍간의 응력 집중 효과를 고려한 리벳 배치 최적화 기법 검증 및 제안)

  • Lee, Sang Gu;Gong, Du Hyun;Sim, Ji Soo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.491-498
    • /
    • 2016
  • Stress on plates may increase in the neighborhood the edges or the holes for rivets or bolts. Excessive stress concentration may lead to severe breakage of the plates. Thus, it is important to conduct optimization of arrangement of holes at the design stage. In this paper, accuracy of FEM analysis was examined for such stress concentration. By changing the hole size on a narrow plate, change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of multiple holes on plate to investigate interaction between the adjacent holes. Then, the FEM results were compared to the reference predictions respectively. Finally, a method by which simple stress concentrating situations can be optimized, will be suggested. This method was examined by FEM, and showed similar tendency with the expectation. Therefore, this method can be valuable when arranging the holes on a plate.

Analysis of Stress Concentration between Fillet and Hole in a Stepped Plate under Tensile Load by Photoelasticity (단이 진 인장부재 필릿과 구멍사이 응력집중에 관한 광탄성법 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Young-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • Stress concentrations around discontinuities, such as a hole or a sudden change in cross section of a structural member, have great important cause in the most materials failure because the stress near the points of application of concentrated loads can reach values much larger than the average value of the stress in the member. This paper presents the stress concentrations between fillet and hole at different locations in a stepped plate under tensile loading. The analysis for interaction effect of stress concentration was performed by photoelasticity and ANSYS which is a commercial finite element software. From the analysis results, the circular hole located at the different position from the fillet radius can cause different values of stress concentration factor within interacting region.

A Study on Performance Improvement of Fruit Vegetables Automatic Grafting System (과채류 접목시스템 개선 연구)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook;An, Se Woong;Jung, In Kyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.215-220
    • /
    • 2017
  • This study was conducted to improve the insufficiency of fruit vegetable grafting system developed by National Institute of Agricultural Sciences, Rural Development Administration. When the rotary blade cut the stem of scions and rootstocks, the grafting failure at curved cutting surfaces happened. The cutting depth of a tomato seedling by a rotated cutter was calculated 0.11 mm even when the cutting arm length and the maximum stem diameter were 50 mm and 5 mm, respectively. Mathematical analysis and high-speed photography showed that there was no problem by cutting in straight the stem of scions and rootstocks. The compression test of seedling stems to design the optimal shape of gripper showed that stems were not completely restored when they were compressed above 0.8 mm and 0.6 mm in case of rootstocks and scion, respectively. This study found that the bending angle of stem of tomato seedlings at the grafting period was 10 degree on average. The optimal gripper finger was the edge finger type which could be precisely set center point by adjusting the distance between fingers. In addition, it was found that most of seedling could be grasped without damage when the finger-to-finger distances is set to 2.5 mm for scion and 3.0 mm for rootstocks and finger are coated by 1 mm-thick flexible material.