모바일 엣지 클라우드 환경에서 중요하게 다루어야 할 사항 중 하나는 모바일 장치에 대한 모니터링이다. 모바일 장치는 장치의 특성상 불안정한 상태가 발생하여 결함이 발생할 수 있기 때문에 모바일 엣지 클라우드의 SLA (Service Level Agreement)를 만족시키기 위해서는 모바일 장치의 모니터링 기법을 통해 결함을 측정하여 이에 대한 조치를 수행하여야 한다. 이 논문에서는 모바일 엣지 클라우드 환경에서 인공지능 기반 모바일 장치 모니터링 기법을 제안한다. 제안하는 모니터링 기법은 모바일 장치에 대한 이전 모니터링 정보와 현재 모니터링 정보를 기반으로 모바일 장치의 결함 발생을 측정할 수 있도록 설계 되었다. 이를 위해 인공지능 기법 중 하나인 은닉 마르코프 체인 모델을 모바일 장치에 대한 모니터링 기법에 적용하였다. 실험 평가를 통해 제안하는 모니터링 기법에 대한 검증을 수행하였다. 제안하는 기법은 모바일 장치뿐만 아니라 일반적인 클라우드 환경에서의 가상 머신을 모니터링 하는 방법으로도 활용할 수 있도록 설계되었다.
본 논문에서는 웹툰 플랫폼 서비스를 위한 모바일 엣지 컴퓨팅의 구조를 제안한다. 웹툰과 같이 모바일 디바이스에서 실행되는 데이터들을 클라우드 서버로 오프로드하거나 원격 서버로부터 필요한 응용프로그램들을 다운로드 받지 않고, 모바일과 가까운 곳에 캐싱 콘텐츠를 전개함으로써 전송 지연없는 서비스를 보장받으며, 데이터가 발생한 근접 지역에서 데이터 분석 및 처리가 가능하므로 딥러닝을 적용한 새로운 서비스 카테고리로 확장할 수 있음을 제시한다.
커넥티드카는 네트워크에 연결된 자동차가 다른 자동차 및 도로 인프라뿐만 아니라 스마트 디바이스와 통신하고 여러 소스로부터 실시간 데이터를 수집하여 다양한 서비스를 제공하는 것이다. 커넥티드카의 등장으로 인해서 자동차와 클라우드 서비스의 결합이 빠르게 진행되고 있으나 자동차 데이터 중 실시간 처리가 필수인 데이터가 많다는 특성이 있다. 그러므로 멀리 떨어진 중앙 집중식 서버에서 컴퓨팅을 하는 클라우드 컴퓨팅보다 최근 이슈가 되고 있는 디바이스와 가까운 가장자리에 위치한 서버에서 컴퓨팅을 하는 엣지 컴퓨팅이 커넥티드카의 실시간성을 보장하는 기술로 많은 관심을 받고 있다. 본 논문에서는 기존의 엣지 컴퓨팅과는 달리, 이동성이 있는 모바일 엣지 컴퓨팅(MEC) 환경에서 실시간 처리를 저해하는 요소를 찾아 원인을 분석하고 평가해 문제점을 해결하고자 한다. 먼저, MEC 환경을 구축한 후 오픈 소스 시뮬레이터인 Edge Cloudsim 에 적용시켜 시뮬레이션을 한다. 실험 결과 MEC 환경에서 실시간 처리를 저해하는 원인은 모바일 디바이스의 태스크가 오프로딩 되거나 응답을 받기 전 WLAN 의 범위를 벗어났을 때 Task Failure가 발생하기 때문임이 증명되었다.
본 논문에서는 엣지 컴퓨팅을 무인 마켓에 도입하여 엣지 컴퓨팅의 효율성을 확인하고, 로컬 네트워크의 효율적인 대역폭 할당을 위한 두 가지 방법을 제안한다. 무인 마켓과 같이 엄청난 양의 데이터를 필요로 하고 만들어내는 서비스에서는 데이터들을 클라우드로 전송하여 소비자가 불편함을 느끼지 못하도록 빠르게 처리하는 것은 불가능에 가깝다. 그래서 우리는 Amazon Go 를 벤치마킹한 무인 마켓에 엣지 컴퓨팅을 도입하여 이를 구현한다. 그리고 구현한 시스템에서 엣지 컴퓨팅 외에 클라우드 컴퓨팅, 모바일 장치를 적용하여 처리할 때의 응답 시간을 분석하여 엣지 컴퓨팅의 높은 성능을 확인한다. 또한, 구현한 무인 마켓에서 데이터 전송의 효율성을 더욱 높이기 위해 카메라 단위와 매대 단위의 대역폭 할당 기법을 제안한다. 카메라 단위로는 모션 인식기술을 활용하여 움직임이 감지될 때만 각 이미지 프로세스에서 요구되는 고해상도로 송신하는 기법을 제안한다. 매대 단위로는 네트워크에서 수용 가능한 대역폭 임계치에 도달하지 못하게 하기 위해 매대 별 우선순위에 따른 대역폭 할당 스케줄링 기법을 제안한다. 그 결과로 평균 소모대역폭과 최대 소모대역폭을 비교하여 제안한 두 가지 기법이 기존의 방법에 비해 성능을 향상시키는 것을 보인다.
모바일 기기는 그 자체가 가지고 있는 연산 자원이 제한적이기 때문에 클라우드를 활용하여 컴퓨팅하거나 데이터를 저장하는 경향이 있다. 5G로 인해 실시간성이 중요해 짐에 따라, 중앙 클라우드보다 사용자에게 더 가까운 위치에서 컴퓨팅하는 엣지 클라우드에 관한 많은 연구가 수행되었다. 사용자가 현재 연결된 기지국의 엣지 클라우드와 물리적인 거리가 멀어질수록 네트워크 전송 속도가 느려지게 된다. 따라서 원활한 서비스 이용을 위해서는 가까운 엣지 클라우드로 애플리케이션을 마이그레이션 한 뒤 재실행해야 한다. 우리는 호스트 운영 체제와 독립적이며, 가상 머신에 비해 이미지 크기가 상대적으로 가벼운 도커 컨테이너에서 애플리케이션을 실행한다. 기존의 마이그레이션 연구는 네트워크 시뮬레이터를 사용하여 실험하였다. 시뮬레이터는 고정된 값을 사용하기 때문에 실제 환경에서의 결괏값과는 차이점이 발생한다. 또한, 공유 저장소를 통해 이미지를 마이그레이션 하는 방식을 사용하였는데, 이는 패킷 내용 노출에 대한 위험을 갖는다. 본 논문에서는 실제 환경에서 엣지 컴퓨팅 환경을 구현하여 데이터 암호화 전송방식인 안전 복사(Secure CoPy) 방식으로 컨테이너를 마이그레이션 한다. 공유 저장소 방식 중 하나인 네트워크 파일 시스템(Network File System)과 마이그레이션 시간을 비교하고 안전성 확인을 위해 네트워크 패킷을 분석한다.
5G 목표 중 하나인 초신뢰성 저지연 통신에 도달하기 위해 멀티액세스 엣지 컴퓨팅 패러다임이 탄생했다. 이 패러다임은 클라우드 컴퓨팅 기술을 네트워크 엣지에 더 가깝게 하며 서비스 지연 시간을 줄이기 위해서는 네트워크 엣지에 있는 여러 Edge Cloud에서 서비스 호스팅된다. 모바일 사용자의 경우 서비스 품질 유지를 위해 서비스를 가장 적합한 Edge Cloud로 마이그레이션하는 것은 중요하고 고이동성 시나리오에서는 서비스 마이그레이션 문제가 더욱 복잡해진다. 고정 이동 경로에서 사용자 이동성과 Edge Cloud 선택에 대한 어떤 영향을 미치는 건지 관찰하는 것이 이 연구의 목표다. Mobility-Aware Service Migration (MASM)은 고이동성 시나리오 동안 라우팅 비용과 서비스 마이그레이션 비용이라는 두 가지 주요 매개변수를 기반으로 서비스 마이그레이션을 최적화하기 위해 제안된다. 제안된 알고리즘을 기존의 그리디 알고리즘과 비교하여 평가한다.
IoT 환경이 심화됨에 따라 집, 사무실 등 특정 지역에 설치된 센서 정보를 활용하여 지역내 냉난방, 조명 등의 서비스를 자동 조절하는 지능형 로컬 서비스에 대한 관심이 커지고 있다. 그런데 지금까지의 IoT 기반 지능형 로컬 서비스는 지역 내 사용자의 프레즌스와 서비스 선호도를 간접적인 방식으로 반영함으로써 실제 재실중인 사용자의 선호도를 왜곡하여 반영하는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해결하기 위해 개별 사용자의 프레즌스 및 선호도 정보를 기반으로 한 지능형 로컬 서비스 제어 방식을 제안하고 이를 프로토타입 으로 구현한 결과를 제시한다. 아울러 대부분의 지능형 로컬 서비스를 위한 복잡한 예측 모형의 생성은 주로 클라우드 상의 서버에서 수행되어 왔다. 그러나 이러한 방식은 IoT 기기와 클라우드 간의 대량의 데이터 전송을 발생시킨다. 모바일 엣지 컴퓨팅 환경은 지능형 로컬 서비스 제어 시스템의 이러한 문제점을 해결할 수 있는 해결책이 될 수 있다. 본 연구에서는 클라우드 환경에서 개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템을 구현한 후, 구현 결과를 기반으로 모바일 엣지 컴퓨팅 환경에 적용하는 방안을 제시한다.
모바일 데이터의 사용이 늘어나면서 특히 비디오 콘텐츠가 차지하는 비중이 가파르게 증가하고 있다. 모바일 사용자가 지리적으로 원거리에 위치한 클라우드 서버를 통해 데이터를 전달받으면서 발생하는 문제들을 해결하기 위해 사용자와 지리적으로 가까운 엣지 서버에 미리 데이터를 캐싱하는 방법이 많은 주목을 받고 있다. 본 논문에서는 셀룰러 네트워크 환경에서 지연 오프로딩 스킴(delayed offloading scheme)을 적용해 모바일 사용자에게 효과적으로 콘텐츠 파일을 제공하기 위한 SBS 캐싱 기법을 제안하였다. 지연 오프로딩 스킴에서 Macro Base Station(MBS)보다 Small Cell Base Station(SBS)으로부터 데이터를 다운받는 경우 더 적은 비용을 요구하기 때문에 MBS로부터 전송받는 데이터 크기를 최소화하는 것을 목표로 하였다. 모바일 사용자의 이동 경로 확률과 콘텐츠 파일의 인기도를 사용해 SBS에 캐싱할 콘텐츠 파일과 그 크기를 결정하고 SBS의 서비스 범위가 중복되는 것을 고려해 콘텐츠 파일을 재배치하는 캐싱 기법을 제안하였다. 또한 실험을 통해 다른 알고리즘보다 MBS로부터 다운받는 데이터 크기를 줄일 수 있다는 것을 증명하였다.
최근 인공지능 기술의 발전으로 모바일 환경에서 AI 응용을 수행하는 사례가 늘고 있다. 하지만, 모바일 환경은 데스크탑이나 서버에 비해 자원이 제한적이므로 인공지능 워크로드를 모바일에서 효율적으로 수행하기 위한 연구가 최근 주목받고 있다. 대부분의 연구는 컴퓨팅 자원의 제약을 해소하기 위한 엣지 또는 클라우드로의 오프로딩에 초점이 맞추어져 있으며, 스토리지 접근과 관련한 파일 입출력 특성에 관한 연구는 아직까지 널리 이루어지지 않고 있다. 본 논문에서는 모바일 환경에서 딥러닝 애플리케이션의 실행 시 발생하는 파일 입출력 트레이스를 분석하고, 기존 모바일 워크로드와의 차이점에 대해 분석한다. 본 논문의 분석 결과가 딥러닝의 파일 접근 특성을 고려하여 미래의 스마트폰 시스템 소프트웨어를 효율적으로 설계하는 데에 활용되기를 기대한다.
클라우드를 통한 데이터 처리는 통신 과정에서 지연시간과 통신비용 증가 등 같은 많은 문제가 발생한다. 사물인터넷 분야에서는 이러한 문제를 해결하기 위해 엣지 컴퓨팅 연구가 활발히 이루어지고 있고, 대표적인 응용 분야로 자율주행이 있다. 실내 자율주행에서는 실외와 달리 GPS와 교통정보를 이용할 수 없기 때문에 센서를 활용하여 주변 환경을 인식해야 한다. 그리고 자원이 제약된 모바일 환경이기 때문에 효율적인 자율주행 시스템이 필요하다. 본 논문에서는 실내 환경에서 자율주행을 위해 신경망을 사용하는 기계학습을 제안한다. 신경망 모델은 LiDAR 센서에서 측정된 거리 데이터를 바탕으로 현재 위치에 가장 적절한 주행 명령을 예측한다. 신경망의 입력 데이터의 수에 따른 성능 평가를 수행하기 위해 6가지의 학습 모델을 설계하였다. 주행과 학습을 위해 Raspberry Pi 기반의 자율주행 차량을 제작하였고, 학습 데이터 수집과 성능평가를 위한 실내 주행 트랙을 제작하였다. 6가지의 신경망 모델들은 정확도와 응답시간 그리고 배터리 소모에 대한 성능 비교를 하였고, 입력 데이터의 수가 성능에 미치는 영향을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.