• Title/Summary/Keyword: 모바일 딥러닝

Search Result 110, Processing Time 0.025 seconds

Implementation and Optimization of Distributed Deep learning based on Multi Layer Neural Network for Mobile Big Data at Apache Spark (아파치 스파크에서 모바일 빅 데이터에 대한 다계층 인공신경망 기반 분산 딥러닝 구현 및 최적화)

  • Myung, Rohyoung;Ahn, Beomjin;Yu, Heonchang
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.201-204
    • /
    • 2017
  • 빅 데이터의 시대가 도래하면서 이전보다 데이터로부터 유의미한 정보를 추출하는 것에 대한 연구가 활발하게 진행되고 있다. 딥러닝은 텍스트, 이미지, 동영상 등 다양한 데이터에 대한 학습을 가능하게 할 뿐만 아니라 높은 학습 정확도를 보임으로써 차세대 머선러닝 기술로 각광 받고 있다. 그러나 딥러닝은 일반적으로 학습해야하는 데이터가 많을 뿐만 아니라 학습에 요구되는 시간이 매우 길다. 또한 데이터의 전처리 수준과 학습 모델 튜닝에 의해 학습정확도가 크게 영향을 받기 때문에 활용이 어렵다. 딥러닝에서 학습에 요구되는 데이터의 양과 연산량이 많아지면서 분산 처리 프레임워크 기반 분산 학습을 통해 학습 정확도는 유지하면서 학습시간을 단축시키는 사례가 많아지고 있다. 본 연구에서는 범용 분산 처리 프레임워크인 아파치 스파크에서 데이터 병렬화 기반 분산 학습 모델을 활용하여 모바일 빅 데이터 분석을 위한 딥러닝을 구현한다. 딥러닝을 구현할 때 분산학습을 통해 학습 속도를 높이면서도 학습 정확도를 높이기 위한 모델 튜닝 방법을 연구한다. 또한 스파크의 분산 병렬처리 효율을 최대한 끌어올리기 위해 파티션 병렬 최적화 기법을 적용하여 딥러닝의 학습속도를 향상시킨다.

  • PDF

An Android App Development - 'NoonchiCoaching_DeepLearning' has function of recommendation based on Deep Learning (딥러닝 예측 알고리즘 기반의 맞춤형 추천 모바일 앱 '눈치코칭_여행딥러닝' 개발)

  • Lee, Jong-Min;Kwon, Young-Jun;Kim, Yeoul;Kim, KyeongSeok;Jang, Jae Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.498-503
    • /
    • 2018
  • 본 논문은 한국관광공사에서 제공하는 Tour API 3.0 Open API에서 제공하는 데이터를 바탕으로 한다. Google에서 제공해 주는 TensorFlow를 통해서 인공 신경망 딥러닝 알고리즘과 가중치 알고리즘을 통해서 사용자 기호에 맞춰 정보를 추천해 주는 어플리케이션 '눈치코칭_여행딥러닝'의 설계 및 구현에 대하여 서술한다. 현재 순위알고리즘은 평균적으로 40%, 딥러닝 모델은 60%정확도를 보여, 딥러닝이 보다 좋은 성능을 보였다.

  • PDF

Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning (딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘)

  • Woo, Sung-hee;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.306-308
    • /
    • 2018
  • This paper proposes a variant malicious code detection algorithm in a mobile environment using a deep learning algorithm. In order to solve the problem of malicious code detection method based on Android, we have proved high detection rate through signature based malicious code detection method and realtime malicious file detection algorithm using machine learning method.

  • PDF

A mobile system development which has function of movie success prediction and recommendation based on deep learning (딥러닝 기반 영화 흥행 예측 및 영화 추천 모바일 시스템 개발)

  • Kim, Kyeong-Seok;Jang, Jae-Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.443-448
    • /
    • 2019
  • 본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.

  • PDF

A Study on Crack Detection in Asphalt Road Pavement Using Small Deep Learning (스몰 딥러닝을 이용한 아스팔트 도로 포장의 균열 탐지에 관한 연구)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.13-19
    • /
    • 2021
  • Cracks in asphalt pavement occur due to changes in weather or impact from vehicles, and if cracks are left unattended, the life of the pavement may be shortened, and various accidents may occur. Therefore, studies have been conducted to detect cracks through images in order to quickly detect cracks in the asphalt pavement automatically and perform maintenance activity. Recent studies adopt machine-learning models for detecting cracks in asphalt road pavement using a Convolutional Neural Network. However, their practical use is limited because they require high-performance computing power. Therefore, this paper proposes a framework for detecting cracks in asphalt road pavement by applying a small deep learning model applicable to mobile devices. The small deep learning model proposed through the case study was compared with general deep learning models, and although it was a model with relatively few parameters, it showed similar performance to general deep learning models. The developed model is expected to be embedded and used in mobile devices or IoT for crack detection in asphalt pavement.

A Mobile System Development which has Function of Vietnam Hotel Recommendation based on Deep Learning (딥러닝 기반 베트남 호텔 맞춤 추천 모바일 시스템 개발)

  • Oh, Jong-Hyun;Seo, Young-Soo;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.408-413
    • /
    • 2020
  • 본 논문은 아고다 사이트의 호텔 정보를 크롤링하여 사용자의 선호 호텔을 구글에서 제공하는 Tensorflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 호텔을 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 해외(베트남) 호텔을 취향에 맞게 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 파악하고 최적의 호텔 정보를 추천하는 기능을 제공한다. 본 애플리케이션에 사용된 선호 호텔 예측 모델은 약 84%의 정확도를 보이며 추천 별점으로 표시되어 사용자가 각 호텔에 대해 얼마만큼 선호도를 갖는지 알 수 있다.

  • PDF

User-specific Food Recommended System Using Data Cleaning (데이터 정제를 통한 딥러닝 기반의 유저 맞춤형 음식추천시스템)

  • Kim, Gyun-Yeop;Kang, Sang-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.578-581
    • /
    • 2020
  • 제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.

  • PDF

Deep Learning System based on Morphological Neural Network (몰포러지 신경망 기반 딥러닝 시스템)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.

Mobile Food Recommendation System for Patients U sing Light-weight Deep Learning and Knowledge Bases (경량 딥러닝과 지식베이스를 활용한 모바일 질환별 식품 추천 시스템)

  • Hyeon, Bumsu;Kim, Dohyun;Lee, SangKeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.534-535
    • /
    • 2020
  • 본 논문에서는 딥러닝과 지식베이스를 융합하여 활용한 질환 인식 및 식품 추천 시스템을 제안한다. 제안하는 시스템은 온전히 모바일 디바이스 내에서 작동하는 시스템이다. 본 시스템은 압축된 딥러닝 모델을 이용해 사용자 대화 텍스트를 분석하여 사용자의 질환을 예측한다. 그 후, 지식베이스를 기반으로 해당 질환 관리에 도움이 되는 식품을 매칭하고 사용자에게 추천한다. 이는 사용자 친화적 헬스케어 애플리케이션으로써 체크리스트 작성 등 번거로운 작업 없이도 사용자에게 유용한 건강 정보를 제공할 수 있다.

Implementation of Mobile Search Services based on Image Deep-learning (이미지 딥러닝 기반의 모바일 검색 서비스 구현)

  • Song, Jeo;Cho, Jung-Hyun;Kwon, Jin-Gwan;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.348-349
    • /
    • 2017
  • 본 논문에서 제안하는 내용은 기존의 포털 검색의 키워드 입력 방식과는 달리, 검색하고자 하는 대상을 스마트폰과 같은 모바일 기기의 카메라로 촬영하면, 해당 촬영 이미지가 사용자 입장에서는 검색 키워드와 같이 동일한 역할을 할 수 있도록 이미지에 해당되는 검색 키워드를 추출 및 매칭하여 검색을 위한 질의어로 사용할 수 있도록 해주는 것을 목적으로 한다.

  • PDF