• Title/Summary/Keyword: 모멘트 불변

Search Result 73, Processing Time 0.028 seconds

Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments (HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법)

  • Kim, Jong-Bae;Park, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.

Region-based Content Retrieval Algorithm Using Image Segmentation (영상 분할을 이용한 영역기반 내용 검색 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.1-11
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the region-based content retrieval(CBIR) algorithm based on an efficient combination of an image segmentation, an image texture, a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. We used active contour and CWT(complex wavelet transform) to perform an image segmentation and extracting an image texture. And shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(color histogram, Hu invariant moments, and complex wavelet transform) are combined and then precision and recall are measured. As a experimental result using DB that was supported by www.freefoto.com. the proposed image retrieval engine have 94.8% precision, 82.7% recall and can apply successfully image retrieval system.

A Implementation of the Feature-based Hierarchical Image Retrieval System (특징기반 계층적 영상 검색 시스템의 구현)

  • 김봉기;김홍준;김창근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.

  • PDF

Real-time Sign Object Detection in Subway station using Rotation-invariant Zernike Moment (회전 불변 제르니케 모멘트를 이용한 실시간 지하철 기호 객체 검출)

  • Weon, Sun-Hee;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.279-289
    • /
    • 2011
  • The latest hardware and software techniques are combined to give safe walking guidance and convenient service of realtime walking assistance system for visually impaired person. This system consists of obstacle detection and perception, place recognition, and sign recognition for pedestrian can safely walking to arrive at their destination. In this paper, we exploit the sign object detection system in subway station for sign recognition that one of the important factors of walking assistance system. This paper suggest the adaptive feature map that can be robustly extract the sign object region from complexed environment with light and noise. And recognize a sign using fast zernike moment features which is invariant under translation, rotation and scale of object during walking. We considered three types of signs as arrow, restroom, and exit number and perform the training and recognizing steps through adaboost classifier. The experimental results prove that our method can be suitable and stable for real-time system through yields on the average 87.16% stable detection rate and 20 frame/sec of operation time for three types of signs in 5000 images of sign database.

A Shape Based Image Retrieval Method using Phase of ART (ART의 위상 정보를 이용한 형태기반 영상 검색 방법)

  • Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.26-36
    • /
    • 2012
  • Since shape of an object in an image carries important information in contents based image retrieval (CBIR), many shape description methods have been proposed to retrieve images using shape information. Among the existing shape based image retrieval methods, the method which employs invariant Zernike moment desciptor (IZMD) showed better performance compared to other methods which employ traditional Zernike moments descriptor in CBIR. In this paper, we propose a new image retrieval method which applies invariant angular radial transform descriptor (IARTD) to obtain higher performance than the method which employs IZMD in CBIR. IARTD is a rotationally invariant feature which consists of magnitudes and alligned phases of angular radial transform coefficients. To produce rotationally invariant phase coefficients, a phase correction scheme is performed while extracting the IARTD. The distance between two IARTDs is defined by combining the differences of the magnitudes and the aligned phases. Through the experiment using MPEG-7 shape dataset, the average bull's eye performance (BEP) of the proposed method is 0.5806 while the average BEPs of the exsiting methods which employ IZMD and traditional ART are 0.4234 and 0.3574, respectively.

Rotation-Invariant Iris Recognition Method Based on Zernike Moments (Zernike 모멘트 기반의 회전 불변 홍채 인식)

  • Choi, Chang-Soo;Seo, Jeong-Man;Jun, Byoung-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. In this paper, we propose a novel method based on Zernike Moment which is robust to rotations of iris patterns. we utilized a selection of Zernike moments for the fast and effective recognition by selecting global optimum moments and local optimum moments for optimal matching of each iris class. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm (SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현)

  • Park, Su-Bin;Lim, Hye-Youn;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2019
  • Recently, object detection technology based on CNN has been actively studied. Object detection technology is used as an important technology in autonomous vehicles, intelligent image analysis, and so on. In this paper, we propose a rotation change robust object detection system by applying MI-FL (Moment Invariant-Feature Layer) to SSD (Single Shot Multibox Detector) which is one of CNN-based object detectors. First, the features of the input image are extracted based on the VGG network. Then, a total of six feature layers are applied to generate bounding boxes by predicting the location and type of object. We then use the NMS algorithm to get the bounding box that is the most likely object. Once an object bounding box has been determined, the invariant moment feature of the corresponding region is extracted using MI-FL, and stored and learned in advance. In the detection process, it is possible to detect the rotated image more robust than the conventional method by using the previously stored moment invariant feature information. The performance improvement of about 4 ~ 5% was confirmed by comparing SSD with existing SSD and MI-FL.

Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation (밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식)

  • 이형지;정재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.149-156
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

2-D Conditional Moment for Recognition of Deformed Letters

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.16-22
    • /
    • 2001
  • In this paper we mose a new scheme for recognition of deformed letters by extracting feature vectors based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are comprised of 2-D conditional moments which are invariant under translation, rotation, and scale of an image. The Algorithm for pattern recognition of deformed letters contains two parts: the extraction of feature vector and the recognition process. (i) We extract feature vector which consists of an improved 2-D conditional moments on the basis of estimated conditional Gibbs distribution for an image. (ii) In the recognition phase, the minimization of the discrimination cost function for a deformed letters determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, recognition experiments with a generated document was conducted. on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 96%.

  • PDF

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.