• Title/Summary/Keyword: 모멘트 변화도

Search Result 565, Processing Time 0.022 seconds

A Study on Rotation Behavior of High Strength Steel Endplate Connections under Fire (화재시 고강도강 엔드플레이트 접합부의 회전 거동에 관한 연구)

  • Shin, Su-Min;Lee, Chy-Hyoung;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.35-43
    • /
    • 2016
  • In order to understand rotation behavior of high strength steel endplate connections under fire, this study is compared with existing studies conducted using FEA program. Eurocode 3 presents the three failure modes according to the prediction of bending resistance moment. The parameters of analysis model are temperature, thickness and steel materials of endplate. The rotation stiffness, and bending resistance moment are analyzed according to the parameters. The change of rotation stiffness and bending resistance moment are analyzed about the parameters, regression equations are suggested the change of high strength steel endplate connections. Consequently, the regression equations were proposed as the linear and quadratic equation. The moment ratio of high strength steel under fire was more reduced than the carbon steel, and was small effect about the thickness. When the high strength steel under fire was compared with at ambient temperature, the slope of initial rotation stiffness reduced, the increment ratio of moment was slow, and the change of plastic rotation stiffness wasn't effect by the thickness increase.

Model on the Elastic Deflection of Temple of the Spectacle Frame (안경테 다리의 탄성변형에 관한 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Differential equations and their solutions were formulated to describe the deflection of the tapered, nonuniform thickness and width's temple, clamped at one end while the perpendicular force is acting on the other end which is freely suspended. The model was derived based on laws of continuity at every point inside the elastic medium that the deflection, tangent slope, bending moment, shearing force must be continuous within the medium. The model is found to be in good agreement with measurements on the beta titanium temple with the correlation 0.992 and p=0.999(Chi test). Therefore it is possible to predict the effect of various temple parameters such as elastic modulus, thickness, width on the deflection of the temples being considered.

  • PDF

Effect of Incident Angle of Wave on Floating Pontoon and Moment Resisting Frame (파랑 입사각이 장방형 플로팅 함체와 상부 골조에 미치는 효과)

  • Lee, Young-Wook;Kim, Bo-Ram
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • To find the influence of incident angle of wave on the moment of 3 storied steel moment resisting frame which is placed on the concrete rectangular pontoon, the fluid dynamic analysis is carried out, varying the period of wave from 5 to 15 second by 2 seconds. As increasing incident angle of wave to longitudinal axis, the influence of RAO-rolling is increased. The moment of longitudinal frame is increased apparently by the wave pressure when the incident angle is $0^{\circ}$. And the moment of the frame due to the wave pressure is decreased as the incident angle is increased. But the moment of frame due to acceleration caused from pitching and rolling is increased. It is shown that the increased moment when incident angle is $90^{\circ}$ is much greater than that of incident angle $0^{\circ}$.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.64-71
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for different jet flow conditions including jet pressure and jet Mach number. The results show different behavior of normal force and moment variation according to jet pressure variation and jet Mach number variation. From the detailed flow field analyses, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by obtaining the lateral thrust through higher jet Mach number rather than through high jet pressure.

Optimal Design of Reinforced Concrete Frames using Sensitivity Analysis (설계민감도를 이용한 철근콘크리트 뼈대구조의 최적화)

  • Byun, Keun Joo;Choi, Hong Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • In the design of reinforced concrete framed structures, which consist of various design variables, the objective and the constraint functions are formulated in complicated forms. Usually iterative methods have been used to optimize the design variables. In this paper, multilevel formulation is adopted, and design variables are selected in reduced numbers at each level, to reduce the iterative cycle and to accelerate the convergence rate. At level 1, elastic analysis is performed to get the upper and lower bounds of the redistributed design moments due to inelastic behavior of the frame. Then the design moments are taken as design variables and optimized at level 2, and the sizing variables are optimized at level 3. The optimization of redistributed moments is performed using the design sensitivity obtained at the level 2, and force approximation technique is used to reflect the variation of design variables in the lower level to the upper level. The design variables are selected in reduced numbers at each level, and the optimization formulation is simplified effectively. A cost function is taken as the objective function, and the constraints of the stress of the structures are derived from BSI CP 110 following limit state theory. Numerical examples are included to prove the effectiveness of the developed algorithm.

  • PDF

A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) -Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck- (선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) -갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 -)

  • Lee, Yun-Sok;Kim, Chol-Seong;Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • A coastwise chemical tanker sailing at full speed has capsized during turning in calm water. In the previous paper, we investigated the reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and increased the vertical distance between the center of gravity of the ship and the center of lateral water drag.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part II. Freestream-Jet Angle Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part II. 자유류-제트 각 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.27-34
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several parameters such as angles of attack, circumferential jet positions, and spouting jet angles. Missile surface is divided into four regions with respect to the center of gravity, and the normal force and moment distribution at each region are compared. The results show different behavior of the normal force and moment variation according to each parameter. Furthermore, it is shown that the pitching moment can be minimized through proper combination of each parameter.

Evaluation of Structural Behavior and Moment of Inertia on Modular Slabs Subjected to Cyclic Loading (반복하중을 받는 모듈러 슬래브의 거동 및 단면2차모멘트 평가)

  • Park, Jongho;Choi, Jinwoong;Lee, Hong-Myung;Park, Sun-Kyu;Hong, Sungnam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • Recently, the maintenance activity for aging of bridge structures was difficult because of traffic jam, environment pollution and increasing cost. And to solve these problems, modular bridge research has been studied. After static and cyclic loading test was conducted for serviceability and bending performance with one way slab, effective moment of inertia of modular specimen was analyzed to estimate the deflection by KCI(2012). To conduct the test, one integral slab and three modular slabs were made for static loading and one integral and modular slab were made for cyclic. As a result of the test, the modular slab had the similar bending performance of the integral. But the ultimate deflection showed the insufficient which was smaller than 20%. In the cyclic loading test, the modular slab has different behavior of deflection with the integral, so it was evaluated difficult for serviceability. In addition, effective moment of inertia by KCI(2012) was not estimated for modular slab with connection. The new value of m which was ratio between moments is 4.53 based on result of test for predicting deflection of modular.

Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation (밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식)

  • 이형지;정재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.149-156
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

Analysis of the Creep Effect on the Dural-sac Occlusion in the Lumbar Spinal Motion Segment (크?현상이 요추 운동분절내의 척추경악 교합에 미치는 영향 해석)

  • 김영은;조성윤
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.551-557
    • /
    • 2001
  • Occlusion of the dural-sac in the lumbar spine was quantitatively analysed using a one motion segment finite element mode developed in this study. Occlusion was quantified by calculating the cross sectional area chance of the dural-sac. In static analysis. less than 2 kN of compressive load could Produced no dural-sac occlusion. whereas 6kN load reduced cross sectional area by 4%, and produced 7.4%, 10.5% occlusion for additional 8 Nm. 10 Nm extension moments. respectively. In creep analysis, 10 Nm extension reduced cross sectional area and volume of the dural-sac by 6.9% and 2.4%, respectively. However. flexion moment could not produce any occlusion. The results suggested that occlusions may result mainly from slackening of ligamentum flavum and disc budging.

  • PDF