• Title/Summary/Keyword: 모르터

Search Result 340, Processing Time 0.026 seconds

A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products (산업부산물을 사용한 알칼리 활성 무시멘트 모르타르의 품질특성에 관한 연구)

  • Kwon, Yong-Hun;Kwon, Yeong-Ho;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study investigated quality properties of alkali activated cement free mortar using industrial by-product such as cement kiln dust(CKD), silica fume(SF) and quartz sand powder(SP) to compare with previous research about blast furnace slag(BS) and fly ash(FA). The results were as following. All materials were effective to increase compressive strength, however they showed different tendency on flowability. CKD and SP increased flowability, but on the other hand SF did not because it's blain was great difference with other materials. Flowability and compressive strength were related with grading distributions of binders because CKD, SP and SF which had small particle size filled up BS and FA. Application of industrial by-products with various grading distributions could be effective for the high early strength and flowability of alkali activated cement free mortar using BS.

A Fundamental Study on the Application of High Quality of $TiO_2$ as Architectural materials - Properties of Water purification with as the central - (건축용 재료로서 이산화티탄의 활용성 검토에 관한 기초적 연구 - 수질정화특성을 중심으로 -)

  • Son Gil-Sung;Heo Jae-Won;Kim Hyo-Youl;Lee Jong-Il;Lim Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.147-153
    • /
    • 2006
  • Photocatalyst reaction has limit of its usage because application range mostly centered on atmosphere purification area. Thus, it is true that an alternative plans are necessary to increase usage of $TiO_2$ as photocatalyst material. (1) The result of flow felt according to $TiO_2$ replacement rate has shown that both of anatase type and rutile type over 12% deviated from desired flow, $110{\pm}5mm$. Consequently, the range below 9% will be suitable when the anatase type $TiO_2$ if used for functional additives if workability is considered. (2) After compressive strength test, replacement rate 6-9% is estimated as suitable range if $TiO_2$ is used as compressive strength material. Rutile type and anatase type are suitable for in early-age strength and long-age strength respectively. (3) It was revealed that bending strength was dramatically decreased when replacement rate was increased. The main reason were the increase of $TiO_2$ doesn't influence hydration reaction and the decrease of bending strength. (4) The result from the water purification properties test using ion-chromatograhpy has shown that the condition with anatase type $TiO_2$ was normally better than rutile type on the same replacement rate.

  • PDF

Evaluation of Reinforced Materials and Epoxy Resins for Adhesion Repairing-Reinforced of RC Construction (RC구조물 접착 보수$\cdot$보강용 에폭시수지 및 보강재료의 재료특성 평가)

  • Park Yong-Kyu;Joo Eun-Hi;Lee Gun-Cheol;Byun Hang-Yong;Woo Jong-Wan;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.183-186
    • /
    • 2005
  • This study investigates material properties of epoxy resins and reinforced materials for adhesion repairing-reinforced of RC construction. According to the test. elasticity modulus of mortar indicated 16-26(GPa) and that of concrete was 18-27(GPa). It became decreased as mixture proportion, W/C and fluidity of both mortar and concrete increased In addition the elasticity modulus of epoxy resins exhibited around 45.3-220(GPa), while that of steel plate and Carbon Bar indicated 338(GPa) and 34.1 (GPa), respectively. It is obvious that individual materials had big different value of elasticity modulus. Meanwhile, thermal expansion coefficients of mortar was 10-13 ${\mu}\varepsilon$ /$^{\circ}C$ and that of concrete was 9-11 $\mu \varepsilon$ /$^{\circ}C$ The increase of mixture Voportion and W/C resulted in lower value of thermal expansion coefficients and the increase of flow and slump exhibited slightly higher value. The epoxy resin indicated 41-54 ${\mu}\varepsilon$ /$^{\circ}C$ which is 4-5 times larger value than concrete and steel plate and Carbon Bar was 11.93 ${\mu}\varepsilon$ /$^{\circ}C$ and -1.68 ${\mu}\varepsilon$ /$^{\circ}C$ respectively. Hence, the adhesion strength of the epoxy resins should be considered before it is used in field condition, due to different thermal expansion coefficient of each material.

  • PDF

A Study on the Strengths of Epoxy Resin Mortar under Heat Exposure (열을 받은 에폭시 수지 모르터의 강도에 관한 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.92-98
    • /
    • 1982
  • The major objective of this study was to investigate the heat resistance of epoxy resin mortar. For this purpose, these tests of compressive and bending strength were accomp- olished with various heating temperature (40˚C, 60˚C, 80˚C, 100˚C, 120˚C), and with various mixing ratio (1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1:12, 1:14). The exprimental resin was to be Epi-Bis type epoxy resin, which is widely used as construction materials. The results obtained are summarized as follows; 1. The variations of color tone started to begin at 60˚C, and it has come out very heavy at 120˚C. It was assumed that the decrement of weight resulted from carbonization were about 0.22% at 100˚C, and about 0.34% at 120˚C. 2. The compressive and bending strength were increased with temperature rise up to 80˚C, but these were made rapid decrease when the given temperature was over. And so, the mean decrement of compressive and bending strength at 120˚C reached up to 35.5% and 26.4%, respectively. 3. The regression equation between compressive and bending strength for epoxy resin mortar under heat exposure were obtained as follows; od=0. 371oc+39. 23 (r=0. 986) And the estimated value of bending strength was corresponded to about 37 percent in comparing with that of the compressive strength. 4. Consquently, the heat resistance temperature of epoxy resin mortar was to be around 80˚C, and it was generally very low values. But it was regarded that the epoxy resin mortar will not be difficult with materials of civil engineering works and agricultural structures.

  • PDF

Experimental Study on the Retrofit Method to Improve the Structural Capacity of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 구조성능개선을 위한 보강방안에 관한 실험적 연구)

  • Ha, Gee-Joo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.79-86
    • /
    • 2008
  • Four RC shear wall specimens with a/d of 2.2 are designed. And a flexural retrofitting is performed for one specimen by both enlarging wall section and adding additional vertical reinforcements. Also the effectivity of jaketting wall sides is evaluated for the two methods using only steel plate or welded wire mesh with enlargement of section. Cyclic loads are applied to the retrofitted specimens according to the loading history proposed by ACI under constant axial force. Test result showed that the strength and ductility of specimen were improved where the section was enlarged after the installation of additional vertical reinforcements. Confining the ends of wall by U shape W.W.F. with enlargement of section showed most excellent structural capacity regarding to the strength and ductility. Retrofitting by using steel plate was much effective not only to protect the abrupt decrease of strength after yield but also to improve the deformation capacity.

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products (폐유리와 산업부산물을 사용한 모르터의 팽창특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.440-448
    • /
    • 2002
  • Waste glass has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of waste glass color(amber, emerald-green), industrial by-products(ground granulated blast-furnace slag, fly ash), and the content of industrial by-products for reducing ASR expansion caused by the waste glass. The possibility of using glass ground as pozzolanic properties was also analyzed. From the result of this study, the pessimum size of waste glass was 2.5∼1.2 mm regardless of waste glass color. And the smaller than 2.5∼1.2 mm waste glass is, the more decreasing expansion of ASR is. Also, the combination of waste glass with industrial by-products have an effect on reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass, and the glass ground of less than 0.075 mm is applicable as a pozzolanic material.

Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes (무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성)

  • Song, Jin-Kyu;Lee, Kang-Seok;Han, Sun-Ae;Kim, Young-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1008
    • /
    • 2008
  • The purpose of this study is to estimate basic mechanical properties of alkali-activated concretes based on GGBS(Ground Granulated Blast Furnace Slag). In this study, various mix ratios of alkali activated concretes based on sodium silicate and GGBS were set to evaluate concrete's compressive strengths and strains on the basis of results of existing alkali-activated cements and preliminary concrete tests, which were already performed by authors [Ref. 1]. Compressive strengths of concretes of ages 1, 3, 7, 28, 56 and 91 days were tested and investigated, respectively, and at early ages (< 7days) alkali-activated slag concrete (AASC) showed a high strength development, compared to that of Ordinary Portland Cement (OPC). A compressive strengths of AASC at age-3days range between 18 and 24 MPa, while those of OPC range 12 and 15 MPa. The stress-strain curve after maximum stress, on the other hand, is approximately reached at a compressive strain between 0.002 and 0.0025, which mechanical property is very similar to that of OPC.

  • PDF

Strength Characteristics of Epoxy Resin Mortar (에폭시 수지 모르터의 강도 특성)

  • 정규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.92-99
    • /
    • 1982
  • The objective of this study was to investigate the compressive and bending strength characteristics of epoxy resin mortar, which is still in an early stage of its use and study in Korea. The results obtained are summarized as follows; 1. The compressive strengths of epoxy resin mortar after 1 day, 2 days and 3 days were gained 87%, 91% and 95%, respectively, in view of that of mortar at the age of 7 days. This result showed that the initial compressive strength within 1 day was very high. 2. The highest compressive strength of epoxy resin mortar was 914 kg/cm2 at the point of having the mixing ratio of one to two. It reached up to 3.7 times that of the normal portland cement mortar at the age of 28 days. 3. The bending strengths of epoxy resin mortar after 1 day, 2 days and 3 days came up to 88%, 93% and 97%, respectively, in comparing that of mortar at the age of 7 days. It was expressed to be simielar to the tendency of compressive strength. 4. The highest bending strength of epoxy resin mortar was 384 kg/cm2 at mixing ratio of one to two. It came up to as much as 6.5 times in comparing with that of the normal portland cement mortar at the age of 28 days. Therefore, the epoxy resin mortar would be effective for promoting the bending strength of structural members. 5. The regression equation between compressive and bending strength was obtained as follows; oo~=0.391 oc+27.54 (r=0.99) And the estimated value of bending strength was corresponded to about 44 per cent in comparing with that of the compressive strength.

  • PDF

Studies on the Production and Property of Light Weight Concrete (경량(輕量)콘크리트의 제조(製造)와 그 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up;Cho, Seong Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.310-323
    • /
    • 1983
  • To study the effect of foaming agent on the production and property of light weight concrete, the tests of compressive, tensile, bending strengths and absorption rates of mortar were done under the different mixing ratio with J, A and D foaming agents. The results obtained were summarized as follows : 1. The strengths were decreased in richer mixing ratio and more addition of foaming agent. The decrease of strengths was the greatest at the level of 0.75% of foaming agent. The decreasing rate of strengths was in order of J, A and D foaming agent. 2. At the mixing ratio of 1:1, ${\sigma}_{28}$ and 0.75% of foaming agent, the compressive strength was decreased up to 34.9% by D, 47.8% by A and 86.8% by J foaming agent, respectively, the tensile strength was decreased up to 14.8% by D, 20.2% by A and 77.9% by J foaming agent, respectively, bending strength was decreased up to 19.9% by D, 35.0% by A and 79.1% by J foaming agent, respectively. The decrease of compressive strength was more severe than that of tensile and bending strengths. 3. The absorption rates were increased in poorer mixing ratio and more addition of foaming agent. The absorption rate was significantly higher at the early stage of immersed water. The absorption rate was in order of J, A and D foaming agent. 4. The decrease of strengths was inevitable in cement-mortar with foaming agent, but the cement mortar with foaming agent has such the properties of the light-weight, lnsulation, Keeping-warmth, sound proof and fire-proof that if could be utilized to the constructions which need low strengths.

  • PDF