• Title/Summary/Keyword: 모든 시계

Search Result 380, Processing Time 0.036 seconds

Selection of a Mother Wavelet Using Wavelet Analysis of Time Series Data (시계열 자료의 웨이블릿 분석을 위한 모 웨이블릿의 선정문제)

  • Lee, Hyunwook;Song, Sunguk;Zhu, Ju Hua;Lee, Munseok;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.259-259
    • /
    • 2019
  • 시계열 자료들을 분석하고자 하는 경우 자료가 정상성(stationarity)을 만족하는 경우는 드물다. 특히 계절성을 제거한 자료들에서는 정량화하기 어려운 주기성이 많이 관찰된다. 즉, 어떤 특정지역에서 나타나는 현상이 다른 기상 현상에 영향을 미칠 것은 자명한 일이나 그 관련성이 선형(linearity)일 가능성은 극히 드물다. 따라서 그들 사이의 관련성이 선형성에 근거한 지표들로 정량화되어야 한다. 이러한 문제점을 해결하기 위해서 다양한 방법이 사용되며 그중에서 웨이블릿 분석을 통해 본 연구를 진행하였다. 웨이블릿 변환(wavelet transforms)은 특수한 함수의 집합으로 구성되어 기존 웨이블릿 신호의 분석을 위해 사용되는 방법이다. 이 변환은 푸리에 변환에서 변형된 방법으로 특정한 기저 함수(base function)를 이용하여 기존의 시계열 자료를 주파수로 바꾸는 변환이다. 웨이블릿 변환에서 기저 함수를 모 웨이블릿이라고 하며 이를 천이, 확대 및 축소 과정을 통해 주파수를 구성한다. 웨이블릿 분석은 모 웨이블릿을 분해하고 재결합하여 시계열 분석을 할 수 있다. 모 웨이블릿 함수에는 Haar, Daubechies, Coiflets, Symlets, Morlet, Mexican Hat, Meyer 등의 여러 가지 종류의 모 웨이블릿 함수가 있으며 모 웨이블릿이 달라지면 결과가 다르게 나타난다. 기존에는 Morlet 웨이블릿을 주로 이용하여 주파수분석에 사용하여 결과를 도출하였다. 그리고 시계열 자료는 크게 백색잡음(White Noise), 장기기억(Long Term Memory), 단기기억(Short Term Memory)으로 나뉜다. 각 시계열 자료의 종류에 따라 임의의 시계열 자료를 산정하여 그에 따른 웨이블릿 분석을 통해 모 웨이블릿의 특성을 도출하였다. 본 연구에서는 웨이블릿 분석을 통해 시계열 자료의 최적 모 웨이블릿을 결정하고자 남방진동지수(SOI), 북극진동지수(AOI)의 자료를 이용하여 웨이블릿 분석을 시도하였다. 웨이블릿 분석은 모 웨이블릿에 따라 달라지는 결과를 토대로 분석하였으며 이를 정상성과 지속성에 따라 분류된 시계열에 적용하여 최적 모 웨이블릿을 결정하고자 하였다. 본 연구에서는 임의의 시계열 자료에서 설정한 최적의 모 웨이블릿을 AOI와 SOI와 같은 실제 시계열 자료에 대입하여 분석을 진행하였다. 본 연구에서는 시계열 자료의 종류를 구분하고 자료의 특성에 따라 가장 적합한 모 웨이블릿을 구하고자 하였다.

  • PDF

Development of a graphic user interface for single reservoir simulation model reflecting discrete hedging rule (용수 감량공급 기준곡선을 반영한 단일 댐 모의 운영 모형의 사용자 편의 환경 개발)

  • Jin, Youngkyu;Lee, Sangho;Park, Jinhyuck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.374-374
    • /
    • 2018
  • 프로그래밍 언어로 개발된 프로그램들은 최종 사용자 입장에서 입력과 출력이 불편하다. 또한, 모의 결과를 분석하기 위하여 그래프를 작성하는 소프트웨어를 이용하면 시간이 오래 걸린다. 본 연구에서는 기 개발된 용수 감량공급 기준곡선을 반영한 단일 댐 모의 운영 모형을 최종 사용자가 쉽게 활용할 수 있도록 사용자 편의 환경을 개발한 것에 대해 소개하고자 한다. 용수 감량공급 기준곡선을 반영한 단일 댐 모의 운영의 사용자 편의 환경은 미국의 GoldSim Technology Group에서 개발한 GoldSim을 이용하여 개발하였다. 개발된 사용자 편의 환경에는 단일 댐 모의 운영에 필요한 여러 입력 자료를 쉽게 입력할 수 있도록 하였다. 단일 댐 모의 운영 입력 자료에는 월별 기본계획공급량, 가뭄 단계별 용수 감량공급 비율, 과거 유입량 시계열, 갈수 빈도 유입량 시계열, 가뭄 단계별 감량공급 실행 저수량, 초기 저수량, 저수용량 등이 있다. 개발된 모형의 초기값은 합천댐의 자료가 입력되어 있으나, 입력자료를 변경하여 다른 다목적댐의 모의 운영에 활용이 가능하다. 단일 댐 모의 운영 결과로서 모의 기간 내 발생한 용수별 용수 공급 부족량과 감량공급 일수를 확인가능하다. 또한, 단일 댐 모의 운영 결과를 다양한 그래프로 출력 할 수 있다. 출력 가능한 시계열 그래프는 사용자가 입력한 용수 감량공급 기준곡선, 모의 시 사용한 유입량 시계열, 가뭄 단계, 용수 공급량, 저수량이다. 연구의 사례와 같이 GoldSim을 활용하면 연구개발의 편의 환경을 별도의 편의 환경 개발자를 거치지안고 과학 기술자가 직접 개발할 수 있다.

  • PDF

웨이브렛 변환과 재무시계열

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.1-36
    • /
    • 2005
  • 한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.

  • PDF

다양한 분포의 데이터를 이용한 시계열 패턴 인덱스의 성능 비교

  • 김영인
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.10a
    • /
    • pp.791-805
    • /
    • 1998
  • 음성데이타베이스 이미지 데이터베이스 등과 같은 응용에서 다차원 구조의 시계열 패턴을 효율적으로 처리하기 위한 인덱스 구조가 필요하다. 이러한 인덱스구조로 시계열 패턴 인덱스(9)가 제안되었다. 본 논문에서는 시계열 패턴 인덱스가 실제 응용에 적용가능한가를 판단하기 위하여 , 다양한 분포의 대량 데이터를 이용한 실험을 통한 성능을 비교한다. 성능 실험결과 저장시의 성능은 균일 분포에서 좋은 성능을 나타냈다. 질의 처리시의 성능은 모든 분포에서 좋은 후보 선택의 결과를 나타냈다.

An Index-Based Subsequence Matching Algorithm Supporting Normalization Transform in Time-Series Databases (시계열 데이타베이스의 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • 노웅기;감상욱;황규영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.152-154
    • /
    • 2000
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환은 시계열 데이터간의 절대적인 유클리드 거리에 관계없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 본 논문에서는 이와 같이 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용한 탐색 기법을 인덱스 보간법이라 부른다. 질의 시퀀스의 길이 256~512 중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과를 선택률이 10-5일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 14.6배 개선되었다.

  • PDF

Rule discovery for sequential patterns of trend from Time-Series (시계열 데이터로부터 경향성을 이용한 순차패턴의 탐색)

  • 오용생;남도원;장지숙;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.325-332
    • /
    • 2000
  • 데이터마이닝 분야에서 시계얼 데이터(time-series data)내에서 숨어 있는 순차패턴의 발견은 상품(Items)이나 어떤 사건(Event)과 같이 데이터의 특징이 명확한 대상에 대한 연구는 많이 되어왔으나 수치 값을 가지는 시계열 데이터에서 이들 내부에 숨어 있는 패턴을 발견하는 것은 최근에 관심을 가지게 되었다. 우리는 시계열 데이터를 시간적 변화에 따라 값의 변화 경향(Trend)이 같은 데이터 그룹을 패턴 요소인 벡터 (Vestor)로 표현하여 이들을 이용해서 흥미로운 패턴들을 발견한다. 이와 같은 벡터적인 표현으로 우리는 벡터들 간의 포함관계를 적용해 모든 가능한 형태의 패턴 발견을 목적으로 한다. 또한 경향성을 가진 패턴 요소를 사건(Event)과 같이 취급함으로써 다양한 종류의 시계열 데이터가 동시에 발생될 때 이들 상호간에 연관된 시간적 패턴을 찾을 수 있다. 따라서 이 연구에서 제안하는 경향성을 기초로 한 순차패턴의 탐식은 기업내부의 판매실적의 변화 패턴이나, 고객의 구매 행동분석에 적용이 가능하리라 여겨진다

  • PDF

Time Series Using Fuzzy Logic (삼각퍼지수를 이용한 시계열모형)

  • Jung, Hye-Young;Choi, Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.517-530
    • /
    • 2008
  • In this paper we introduce a time series model using the triangle fuzzy numbers in order to construct a statistical relation for the data which is a sequence of observations which are ordered in time. To estimate the proposed fuzzy model we split of a universal set includes all observation into closed intervals and determine a number and length of the closed interval by the frequency of events belong to the interval. Also we forecast the data by using a difference between observations when the fuzzified numbers equal at successive times. To investigate the efficiency of the proposed model we compare the ordinal and the fuzzy time series model using examples.

시계열(時系列) 자료(資料)와 재무관리(財務管理) 이론(理論)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 1994
  • 재무관리의 모든 영역을 완벽하게 이해하기 위하여는 기업재무관리와 투자론을 비롯하여 금융산업 전체에 대한 연역적 방법에 의한 이론의 정립과 실증분석을 통한 이론의 정립이 관건이라 할 수 있다. 이 논문에서는 실증 분석을 수행함에 있어 우리나라에서 활발하게 논의가 진행되지 않는 시계열분석의 영역을 살펴보았다. 그것은 이와 같은 분야를 천착해 봄으로써 이 분야가 재무관리에 대한 통찰력과 현실 적합성의 판단력을 배양하는데 큰 공헌을 할 수 있으리라는 믿음 때문이다. 이 논의를 통하여 시계열 분석에 대한 활발한 연구가 진행되기를 기대하고 있다. 시계열 확률과정에 대한 재무관리이론을 연역적으로 도출하기는 용이하지 않다. 시계열 분석에서 제시되는 여러 방법론을 재무관리의 시계열에 적용하여 그 시계열의 성질과 특성을 파악하면 그것이 그대로 현실에 적용될 수 있을 것이다. 이러한 연구의 결과는 어떤 형태로든 연역적 방법에 의한 이론의 정립에 깊은 영향을 미칠 것이다. 뿐만 아니라 연속시간의 틀과 이시적(異時的) 양태하(樣態下)에서 많은 재무관리 모형들이 개발되고 있으며, 동태적 상황을 해명하는 의도에서 이 모형들이 연구되고 있는 만큼 시계열 분석은 이 분야에 직접적으로 이용될 수 있다. 시계열 분석에서 제시된 많은 모형들이 재무관리의 실증적 현상을 설명하는데 효과적으로 활용될 수 있다. 뿐만 아니라 현재 연역적으로 개발된 모형들이 설명할 수 없는 부분을 시계열 분석이 직접적으로 해명할 수 있는 능력을 확보하고 있음도 제시되었다. 증권의 현가모형(現價模型), 이자율의 기간구조, 효율적 시장가설도 주가의 변동성 등은 시계열 분석의 다양한 기법을 사용하여 검증되어야 하며, 이 경우 특히 분산의 추정방법을 여러 측면에서 개발해 야 할 것이다. 시계열 분석에서는 두개 또는 그 이상의 기법을 하나로 통합하는 방법이 있을 수 있다. ARIMA와 ARCH가 결합되는 것을 본 바 있다. 구조적(構造的) 변화(變化)(structural change)모형(模型)과 ARCH의 결합도 가능하다. 다른 분야로서는 변동성(變動性)에 관한 연구이다. 변동성(變動性)에 관한 연구는 variance bounds test에 한정된 감이 있으나 정보와 변동성의 관계가 중요시되고 있는 만큼 정보집합과 시계열 분석 기법의 결합은 변동성의 연구에 새로운 지평을 열어줄 것으로 보인다. 따라서 정보집합의 형성에 따라 새로운 추정방법이 개발될 여지가 풍부하다.

  • PDF

A methodology for considering wave overtopping in flooding analysis by using XP-SWMM (XP-SWMM을 이용한 침수 분석 시 월파를 고려하기 위한 방법론)

  • Sun, Dongkyun;Kang, Taeuk;Lee, Sangho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.395-395
    • /
    • 2020
  • 연안 지역의 침수 모의에 관한 국내 연구들은 간단한 월파량 공식 및 조위와 강우만을 결합하여 모의하였거나, 강우 없이 조위와 월파만을 고려하여 모의한 경우가 대부분이었다. 그렇지만 연안 지역의 침수는 강우와 (조위 포함) 월파가 시간에 따라 변하면서 발생하므로, 두 외력조건을 고려하는 침수 모의가 필요하다. 이에 본 연구에서는 연안지역의 침수 분석 시 강우-유출 분석과 2차원 지표면 침수 해석이 가능한 XP-SWMM을 이용하여 강우와 월파의 시간 변화를 고려한 침수 모의 방법론을 제시하고자 한다. 우선 FLOW-3D 모형을 사용하여 연안 지역의 흐름 분석과 월파량 시계열을 산정하였고, XP-SWMM에 산정된 월파량 시계열을 입력하기 위해 해안가 지역에 절점을 생성하였다. 절점의 위치는 FLOW-3D 모형에서 월파량 시계열을 산정한 격자의 중심 위치이다. 월파량 시계열 산정 시 FLOW-3D 모형의 격자를 XP-SWMM에서 모두 고려하기에는 많은 시간이 소요되므로 3개의 격자를 묶어 하나의 절점으로 구현하였고, 3개의 격자에서 산정된 월파량 시계열의 합을 해당 절점에 반영하여 XP-SWMM으로 침수 모의를 진행하였다. 제시된 방법의 적절성을 검토하기 위해 강우와 월파가 동시에 발생한 태풍 차바 내습 시 부산에 위치한 마린시티에 적용하였다. 분석 결과, 한국국토정보공사에서 제공하는 침수흔적도와 모의 결과가 유사함을 확인하였다. 본 연구는 연안 지역의 침수 해석 시 XP-SWMM으로 강우와 함께 월파를 고려한 침수 모의 방법을 제시한 연구 사례로서 의의가 있다. 이는 XP-SWMM의 범용성과 호환성을 높이는 방법론이며, 실제 침수 현상과 가깝게 재현할 수 있다고 판단된다.

  • PDF

An Index Interpolation-based Subsequence Matching Algorithm supporting Normalization Transform in Time-Series Databases (시계열 데이터베이스에서 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • No, Ung-Gi;Kim, Sang-Uk;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.28 no.2
    • /
    • pp.217-232
    • /
    • 2001
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환을 시계열 데이터 간의 절대적인 유클리드 거리에 관계 없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 기존의 서브시퀀스 매칭 알고리즘을 확장 없이 정규화 변환 서브시퀀스 매칭에 단순히 응용할 경우, 질의 결과로 반환되어야 할 서부시퀀스를 모두 찾아내지 못하는 착오 기각이 발생한다. 또한, 정규화 변환을 지원하는 기존의 전체 매칭 알고리즘의 경우, 모든 가능한 질의 시퀀스 길이 각각에 대하여 하나씩의 인덱스를 생성하여야 하므로, 저장 공간 및 데이터 시퀀스 삽입/삭제의 부담이 매우 심각하다. 본 논문에서는 인덱스 보간법을 이용하여 문제를 해결한다. 인덱스 보간법은 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용하며, 인덱스가 필요한 모든 경우에 대한 탐색을 수행하는 기법이다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 제안된 알고리즘은 질의 시에 주어진 질의 시퀀스의 길이에 따라 생성되어 있는 인덱스 중에서 가장 적절한 것을 선택하여 탐색을 수행한다. 이때, 생성되어 있는 인덱스의 개수가 많을수록 탐색 성능이 향상된다. 필요에 따라 인덱스의 개수를 변화함으로써 탐색 성능과 저장 공간 간의 비율을 유연하게 조정할 수 있다. 질의 시퀀스의 길이 256 ~ 512중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과 선택률이 $10^{-2}$일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 2.40배, 선택률이 $10^{-5}$일 때 평균 14.6배 개선되었다. 제안된 알고리즘의 탐색 성능은 탐색 결과 선택률이 작아질수록 더욱 향상되므로, 실제 데이터베이스 응용에서의 효용성이 높다고 판단된다.

  • PDF