• Title/Summary/Keyword: 모드 식별

Search Result 92, Processing Time 0.027 seconds

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Preliminary Design of PNUSAT-1 Cubesat for Vessel Monitoring (선박 모니터링을 위한 PNUSAT-1 큐브위성 시스템 예비 설계)

  • Kim, Haelee;Cho, Dong-hyun;Lee, Sanghoon;Park, Chanhwi;Lim, Ha Kyeong;Kim, Geonwoo;Kwak, Minwoo;Lee, Changhyun;Kim, Shinhyung;Koo, Inhoi;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.137-146
    • /
    • 2022
  • AIS(Automatic Identification System) is a device that automatically transmits and receives ship information and is mounted on the ship. AIS information of ships near the coast can be received on the ground, but when going out to sea more than 50 nautical miles, communication with the ground is cut off. To solve this problem, ship information can be transmitted to the ground through an AIS satellite equipped with an AIS receiver. There is no case of AIS satellite development in Korea yet, and many domestic shipping companies are using overseas AIS services. PNUSAT-1 is a 1U+ CubeSat, developed by Pusan National University, and it is equipped with an AIS receiver for monitoring of ships and transmitting ship information to the ground. Since the mission data of PNUSAT-1 is in text format, the data size is not large. In consideration of this, communication equipment, low-precision sensors, and actuators were selected. In this paper, system preliminary design of PNUSAT-1 was performed, requirements for mission performance, operation scenario and mode design, hardware and software selection, and preliminary design of each subsystem were performed.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

A study on Algorithm Automatically Generating Ray Codes for Ray-tracing (파선코드 자동생성 알고리즘에 관한 연구)

  • Lee, Hee-Il;Cho, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2008
  • When constructing a synthetic seismogram in the earthquake study or in seismic data interpretation by using a ray-tracing technique, the most troublesome and error-prone task is to define a suite of ray codes for the corresponding rays to trace in advance. An infinite number of rays exist for any arbitrarily located source and receiver in a medium. Missing certain important rays or an inappropriate selection of ray codes in tracing rays may result in wrong interpretation of the earthquake record or seismogram. Automatic ray code generation could be able to eliminate those problems. In this study we have developed an efficient algorithm with which one can generate systematically all the ray codes for the source(s) and receiver(s) arbitrarily located in a model. The result of this work could be used not only in analysing multiples in seismic data processing and interpretation, but also in coda wave study, study on the amplification effects in a basin and phase identification of the waves multiply reflected/refracted in earthquake study.

Prediction of Failure Behavior in Composite Motor Cases by Acoustic Emission during Hydroproof Testing (수압보증시험시의 음향방출에 의한 복합재 연소관의 파괴거동 예측)

  • Song, Sung-Jin;Oh, Chi-Hwan;Jeong, Hyun-Jo;Rhee, Sang-Ho;Lim, Soo-Yong;Kim, Ho-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.92-102
    • /
    • 1998
  • Prediction of failure behavior in filament-wound composite motor cases is one of the important issues for their reliable application. Acoustic emission during hydroproof testing of the cases is used to solve this problem. Based on the acoustic emission behavior, failure sites can be located successfully. The identification of failure modes is also possible using the distribution of acoustic emission amplitude. Due to the limitation in the number of samples, it is not possible to predict the final burst pressure of motor cases and the effect of impact damage on the final burst pressure.

  • PDF

A PID Genetic Controller Design Using Reference Model (기준모델을 이용한 PID 유전 제어기 설계)

  • Park, K.H.;Nam, M.H.;Hwang, Y.W.;Chun, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.894-896
    • /
    • 1999
  • PID 제어는 50년의 역사를 갖기 때문에 현장의 사용자는 이 제어방식에 익숙해져 있으며, 제어장치의 구성이 간단하며 제어기의 최적동조가 가능하므로 많은 분야에서 사용되고 있다[1]. 그러나 PID 제어기에 의해서 얻은 결과에 대하여 만족하기 위해서는 많은 시행착오를 겪어야 한다. 또한 만족하는 결과를 얻었다고 할지라도 외란, 플랜트의 동특성이 바뀌는 경우 시스템을 추종하지 못하기 때문에 파라미터를 재조정하여야 한다. 유전 알고리즘은 자연세계의 진화 현상에 기초한 계산모델로서 John Holland에 의해서 1975년에 개발된 전역적인 최적화 알고리즘이며[1][2], 비선형 고차원, 불연속, 다중모드, 노이즈 함수 등에 대하여 강건함을 보여주고, 복잡한 탐색 공간에서 최적 값을 스스로 발견하는 학습 능력을 갖는다. 이 방법은 재생산, 교배, 돌연변이를 통하여 최적해를 찾은 방법으로 1989년에 D. E. Goldgerg에 의해서 체계적으로 정리된 후 여러 분야에서 응용되고 있다[3][4]. 그러나 유전 알고리즘은 목적함수만을 이용하여 해집단을 탐색하기 때문에 숙련운전자가 원하는 제어 특성 명세인 상승시간, 정착시간, 초과량(oveshoot) 둥을 구체적으로 명시하여 제어에 반영할 수 없다. 또한, 유전 알고리즘은 입력 값이 크게 바뀔 경우 다른 시스템으로 인식하여 새로운 탐색을 수행하는 단점을 가지고 있다. 본 논문은 첫째, 기준모델을 도입하여 플랜트의 성능을 기준모델로 표현하여 플랜트가 요구하는 성능지표를 정량적으로 규정하는 것이 가능하였다. 또한, 이것은 미지 플랜트 동특성을 식별하기 위한 신호로 사용되어, 플랜트의 정보를 얻는데 이용되었다. 즉, 기준모델과 플랜트 출력사이의 추종 오차 정보가 적응기구인 PID 유전제어기의 입력으로 사용되며, 구형파 입력의 경우에도 기준모델과 플랜트의 출력차는 크게 변하지 않는다. 따라서, 유전 알고리즘의 목적함수에 기준 모델을 제안 적용하여 안정적이고, 세밀한 제어를 수행하였다. 둘째, PID의 간단하면서 확실한 제어가 가능하다는 점과 전역적인 최적값을 찾을 수 있는 유전 알고리즘을 적용하여 고속제어를 요하는 직류 서보 모터(DC Servo Motor) 운전 시 실시간 파라미터 동조에 적용하였다.

  • PDF

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.