• Title/Summary/Keyword: 모드수

Search Result 4,732, Processing Time 0.026 seconds

Establishment of Analytical Method for Dichlorprop Residues, a Plant Growth Regulator in Agricultural Commodities Using GC/ECD (GC/ECD를 이용한 농산물 중 생장조정제 dichlorprop 잔류 분석법 확립)

  • Lee, Sang-Mok;Kim, Jae-Young;Kim, Tae-Hoon;Lee, Han-Jin;Chang, Moon-Ik;Kim, Hee-Jeong;Cho, Yoon-Jae;Choi, Si-Won;Kim, Myung-Ae;Kim, MeeKyung;Rhee, Gyu-Seek;Lee, Sang-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.214-223
    • /
    • 2013
  • BACKGROUND: This study focused on the development of an analytical method about dichlorprop (DCPP; 2-(2,4-dichlorophenoxy)propionic acid) which is a plant growth regulator, a synthetic auxin for agricultural commodities. DCPP prevents falling of fruits during their growth periods. However, the overdose of DCPP caused the unwanted maturing time and reduce the safe storage period. If we take fruits with exceeding maximum residue limits, it could be harmful. Therefore, this study presented the analytical method of DCPP in agricultural commodities for the nation-wide pesticide residues monitoring program of the Ministry of Food and Drug Safety. METHODS AND RESULTS: We adopted the analytical method for DCPP in agricultural commodities by gas chromatograph in cooperated with Electron Capture Detector(ECD). Sample extraction and purification by ion-associated partition method were applied, then quantitation was done by GC/ECD with DB-17, a moderate polarity column under the temperature-rising condition with nitrogen as a carrier gas and split-less mode. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.9998, analysed from 0.1 to 2.0 mg/L concentration. Limit of quantitation in agricultural commodities represents 0.05 mg/kg, and average recoveries ranged from 78.8 to 102.2%. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 9.5% in 0.05, 0.10, and 0.50 mg/kg. CONCLUSION(S): Our newly improved analytical method for DCPP residues in agricultural commodities was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.