Annual Conference on Human and Language Technology
/
2022.10a
/
pp.545-550
/
2022
본 연구의 목적은 2021년 메신저 언어 200만 어절을 대상으로 수행된 맞춤법 교정 병렬 말뭉치의 설계와 구축의 쟁점을 소개하고, 교정 말뭉치의 주요 교정 및 주석 내용을 기술함으로써 맞춤법 교정 병렬 말뭉치의 특성을 분석하는 것이다. 2021년 맞춤법 교정 병렬 말뭉치의 주요 목표는 메신저 언어의 특수성을 살림과 동시에 형태소 분석이나 기계 번역 등 한국어 처리 도구가 분석할 수 있는 수준으로 교정하는 다소 상충되는 목적을 구현하는 것이었는데, 이는 교정의 수준과 병렬의 단위 설정 등 상당한 쟁점을 내포한다. 본 연구에서는 말뭉치 구축 시점에서 미처 논의하지 못한 교정 수준의 쟁점과 교정 전후의 통계적 특성을 함께 논의하고자 하며, 다음과 같은 몇 가지 하위 내용을 중심으로 논의하고자 한다.첫째, 맞춤법 교정 병렬 말뭉치의 구조 설계와 구축 절차에 대한 논의로, 2022년 초 국내 최초로 공개된 한국어 맞춤법 교정 병렬 말뭉치('모두의 말뭉치'의 일부)의 구축 과정에서 논의되어 온 말뭉치 구조 설계와 구축 절차를 논의한다. 둘째, 문장 단위로 정렬된 맞춤법 교정 말뭉치에서 관찰 가능한 띄어쓰기, 미등재어, 부호형 이모티콘 등의 메신저 언어의 몇 가지 특성을 살펴본다. 마지막으로, 2021년 메신저 맞춤법 교정 말뭉치의 구축 단계에서 미처 논의되지 못한 남은 문제들을 각각 데이터 구조 설계와 구축 차원의 주요 쟁점을 중심으로 논의한다. 특히 메신저 맞춤법 병렬 말뭉치의 주요 목표인 사전학습 언어모델의 학습데이터로서의 가치와 메신저 언어 연구의 기반 자료 구축의 관점에서 맞춤법 교정 병렬 말뭉치 구축의 의의와 향후 과제를 논의하고자 한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.205-210
/
2020
한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.67-72
/
2011
기존의 말뭉치 기반 한국어 형태소 분석 방법은 대용량의 어절 기분석 사전을 사용하여 분석하고, 그 사전에 없는 어절은 코드 변환, 형태소 분리, 원형 복원 규칙 적용 등을 거치는 복잡한 분석 방법을 통해 후보들을 생성했다. 이 복잡한 분석 방법은 제작과 유지보수, 실행 관점 모두에서 효율적이지 못하며 정확률을 낮추고 속도를 느리게 하는 요인이 된다. 이런 문제를 해결하기 위해 부분 어절의 기분석 사전을 구축하여 사용하는 방법이 연구되었다. 본 논문에서는 대용량의 분석 말뭉치를 통해 부분 어절의 기분석 사전을 구축하고 형태소 분석에 사용하는 방법을 제안한다. 세종 말뭉치로 실험한 결과 재현율이 99.05%였으며, 품사 및 동형이의어 태깅 정확률은 96.76%였다.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.273-278
/
2006
이 논문에서 통계기반의 정렬기법을 이용한 한영/영한 양방향 명사구 기계번역 시스템을 설계하고 구현한다. 정렬기법을 이용한 기계번역 시스템을 구축하기 위해서는 않은 양의 병렬말뭉치(Corpus)가 필요하다. 이 논문에서는 병렬 말뭉치를 구축하기 위해서 웹으로부터 한영 대역쌍을 수집하였으며 수집된 병렬 말뭉치와 단어 정렬 도구인 GIZA++ 그리고 번역기(decoder)인 PARAOH(Koehn, 2004), RAMSES(Patry et al., 2002), MARIE(Crego et at., 2005)를 사용하여 한영/영한 양방향 명사구 번역 시스템을 구현하였다. 약 4만 개의 명사구 병렬 말뭉치를 학습 말뭉치와 평가 말뭉치로 분리하여 구현된 시스템을 평가하였다. 그 결과 한영/영한 모두 약 37% BLEU를 보였으나, 영한 번역의 성공도가 좀더 높았다. 앞으로 좀더 많은 양의 병렬 말뭉치를 구축하여 시스템의 성능을 향상시켜야 할 것이며, 지속적으로 병렬 말뭉치를 구축할 수 있는 텍스트 마이닝 기법이 개발되어야 할 것이다. 무엇보다도 한국어 특성에 적합한 단어 정렬 모델이 연구되어야 할 것이다. 또한 개발된 시스템을 다국어 정보검색 시스템에 직접 적용해서 그 효용성을 평가해보아야 할 것이다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.427-432
/
2021
현재 한국어 의존 구문 분석의 표준은 어절 단위로 구문 분석을 수행하는 것이다. 그러나 의존 구문 분석의 분석 단위(어절, 형태소)에 대해서는 현재까지 심도 있는 비교 연구가 진행된 바 없다. 본 연구에서는 의존 구문 분석의 분석 단위가 자연어 처리 분야의 성능에 유의미한 영향을 끼침을 실험적으로 규명한다. STEP 2000과 모두의 말뭉치를 기반으로 구축한 형태소 단위 의존 구문 분석 말뭉치를 사용하여, 의존 구문 분석기 모델 및 의존 트리를 입력으로 활용하는 문장 의미 유사도 분석(STS) 및 관계 추출(RE) 모델을 학습하였다. 그 결과, KMDP가 기존 어절 단위 구문 분석과 비교하여 의존 구문 분석기의 성능과 응용 분야(STS, RE)의 성능이 모두 유의미하게 향상됨을 확인하였다. 이로써 형태소 단위 의존 구문 분석이 한국어 문법을 표현하는 능력이 우수하며, 문법과 의미를 연결하는 인터페이스로써 높은 활용 가치가 있음을 입증한다.
Despite the rise of studies in spoken to sign language translation, low-resource problems of sign language corpus have been rarely addressed. As a first step towards translating from spoken to sign language, we addressed the problems arising from resource scarcity when translating spoken language to manual signals translation using statistical machine translation techniques. More specifically, we proposed three preprocessing methods: 1) paraphrase generation, which increases the size of the corpora, 2) lemmatization, which increases the frequency of each word in the corpora and the translatability of new input words in spoken language, and 3) elimination of function words that are not glossed into manual signals, which match the corresponding constituents of the bilingual sentence pairs. In our experiments, we used different types of English-American sign language parallel corpora. The experimental results showed that the system with each method and the combination of the methods improved the quality of manual signals translation, regardless of the type of the corpora.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.37-39
/
2001
현재 이용가능한 대부분의 자동문서분류 시스템의 가장 큰 문제는 문서에 포함된 단어 사이의 통사 정보는 무시한 채, 각 단어의 분포만 고려한다는 점이다. 하지만, 통사 정보도 문서 분류를 위해 매우 중요한 정보 중의 하나이다. 본 논문에서는 문서에 나타난 어휘 정보와 함께 통사 정보를 함께 고려하는 자동문서분류 방법을 제시한다. Reuters-21578 말뭉치에 대한 문서분류 실험결과 제시된 방법은 어휘정보만 사용하는 방법과 통사정보만 사용하는 방법 모두보다 높은 성능을 보인다 이 말뭉치에 대해서, 어휘정보만으로 학습된 Support Vector Machine으로 약 77%의 매우 높은 정확도를 얻을 수 있음에도 약 0.63%의 추가적인 성능 향상이 있었다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.3
/
pp.357-362
/
2004
Language models are essential in predicting the next word in a spoken sentence, thereby enhancing the speech recognition accuracy, among other things. However, spoken language domains are too numerous, and therefore developers suffer from the lack of corpora with sufficient sizes. This paper proposes a method of combining two n-gram language models, one constructed from a very small corpus of the right domain of interest, the other constructed from a large but less adequate corpus, resulting in a significantly enhanced language model. This method is based on the observation that a small corpus from the right domain has high quality n-grams but has serious sparseness problem, while a large corpus from a different domain has more n-gram statistics but incorrectly biased. With our approach, two n-gram statistics are combined by extending the idea of Katz's backoff and therefore is called a dual-source backoff. We ran experiments with 3-gram language models constructed from newspaper corpora of several million to tens of million words together with models from smaller broadcast news corpora. The target domain was broadcast news. We obtained significant improvement (30%) by incorporating a small corpus around one thirtieth size of the newspaper corpus.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.636-638
/
2018
본 논문에서는 영어권에 비해 상대적으로 부족한 한국어 언어자원을 지속적으로 구축함으로써 한국어 문서로 구성된 시간정보 주석 말뭉치를 확보하고 이를 바탕으로 한국어 시간정보추출 시스템에 대한 연구를 수행한다. 말뭉치 구축 과정에서의 시간정보 주석 작업은 가이드라인을 숙지한 주석자들이 수작업으로 기록하고, 어떤 주석 결과에 대해 의견이 다른 경우에는 중재자가 주석자들과 함께 검토하며 합의점을 도출한다. 시간정보추출 시스템은 자연어 문장에 대한 형태소 분석결과를 이용하여 시간표현(TIMEX3), 시간관계와 연관된 사건(EVENT), 시간표현 및 사건들 간의 시간관계(TLINK)를 추출하는 단계로 이루어진다. 추출된 한국어 시간정보는 문서 내 공통된 개체에 대한 공간정보와 결합함으로써 시공간정보가 모두 반영된 SPOTL을 생성한다. 추후 실험을 통하여 제안시스템의 구체적인 시간정보추출 성능을 파악할 것이다.
In this paper, we propose a modified unsupervised linear alignment algorithm for building an aligned corpus. The original algorithm inserts null characters into both of two aligned strings (source string and target string), because the two strings are different from each other in length. This can cause some difficulties like the search space explosion for applications using the aligned corpus with null characters and no possibility of applying to several machine learning algorithms. To alleviate these difficulties, we modify the algorithm not to contain null characters in the aligned source strings. We have shown the usability of our approach by applying it to different areas such as Korean-English back-trans literation, English grapheme-phoneme conversion, and Korean morphological analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.