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요  약 

언어 모델은 음성 인식이나 필기체 문자 인식 등에서 다음 단어를 예측함으로써 인식률을 높이게 된다. 그러나 언어 모델은 그 도메

인에 따라 모두 다르며 충분한 분량의 말뭉치를 수집하는 것이 거의 불가능하다. 본 논문에서는 N그램 방식의 언어모델을 구축함에 

있어서 크기가 제한적인 말뭉치의 한계를 극복하기 위하여 두개의 말뭉치, 즉 소규모의 구어체 말뭉치와 대규모의 문어체 말뭉치의 

통계를 이용하는 방법을 제시한다. 이 이론을 검증하기 위하여 수십만 단어 규모의 방송용 말뭉치에 수백만 이상의 신문 말뭉치를 

결합하여 방송 스크립트에 대한 퍼플렉시티를 30% 향상시킨 결과를 획득하였다. 

 

Abstract 
Language models are essential in predicting the next word in a spoken sentence, thereby enhancing the speech 

recognition accuracy, among other things. However, spoken language domains are too numerous, and therefore 

developers suffer from the lack of corpora with sufficient sizes. This paper proposes a method of combining two 

n-gram language models, one constructed from a very small corpus of the right domain of interest, the other 

constructed from a large but less adequate corpus, resulting in a significantly enhanced language model. This method 

is based on the observation that a small corpus from the right domain has high quality n-grams but has serious 

sparseness problem, while a large corpus from a different domain has more n-gram statistics but incorrectly biased. 

With our approach, two n-gram statistics are combined by extending the idea of Katz’s backoff and therefore is 
called a dual-source backoff. We ran experiments with 3-gram language models constructed from newspaper 

corpora of several million to tens of million words together with models from smaller broadcast news corpora. The 

target domain was broadcast news. We obtained significant improvement (30%) by incorporating a small corpus 

around one thirtieth size of the newspaper corpus. 
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1. Introduction 
 

Languages have redundancy and therefore have 

regularity, due partly to languages themselves and partly 

to regularity or predictability in the reality that is 

described by the language. Once you heard “in terms” 
you are more likely to hear “of” than “off”. This is an 
example of linguistic regularity. Once you heard “U.S. 
open” you are more likely to hear “Tiger Woods” than 
“Pablo Picasso.” This is due to regularity in reality. 
Language modeling is an attempt to capture the 

regularities and make predictions. One use of language 

modeling has been automatic speech recognition.  

Optical character recognition and spelling correction also 

make use of language modeling. 

Recent attempts in language modeling are mostly 

based on statistical approaches. This is because 

statistics has a solid theoretical foundation for dealing 

with uncertainty. It is easier to integrate information 

from various sources to reach a conclusion. If we see a 

linguistic process as a stochastic process, speech 

recognition can be modeled statistically by using 

Bayes’s law as in equation 1. 

 arg max ( | ) arg max ( | ) ( )
s s

P s a P a s P s=  (1) 

In equation 1, a  represents acoustic signal and s  
represents a sentence. Unless extra-sentential 

information is used, a statistical language model sees 

( )P s  as 1 2 1
1.

( | ... )i i
i n

P w w w w −
=
∏ , where s  is a sequence of 

words 1... nw w . Further, if dependency is assumed to be 

local to previous 1n − words, that is, 

1 2 1 1 2 1( | ... ) ( | ... )i i i i n i i
i i

P w w w w P w w w w− − + − −=∏ ∏ , then we 

call it an n-gram language model. We restrict our 

attention only to n-gram based models, approximating 
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the probability of a sentence as 1 2 1( | ... )i i n i i
i

P w w w w− + − −∏ . 

In this paper, we use 3-gram language model for 

practical reasons. 

In order to use an n-gram language model, it is 

necessary to somehow estimate the probability of the 

form 1 2 1( | ... )i i n i n iP w w w w− + − + − . This is usually obtained by 

maximum likelihood estimation, which is simply a 

relative number of occurrences in a large text, or corpus. 

The process of collecting the occurrences (hence 

probabilities) is called training. 

The biggest obstacle for training by a limited text is 

sparseness. For instance, if we had ten million words in 

a corpus and 10,000 words in the vocabulary, The 

average number of occurrences of a 3-gram is a mere 

0.00001, since there are 1210  possible 3-gram types. 

This means that by simple MLE, most n-grams will have 

zero probabilities, which is certainly not correct. 

Therefore we need a means of estimating probabilities 

for zero-occurrence n-grams. 

Smoothing, or discounting is a way of giving non-zero 

probabilities to n-grams that have zero MLE 

probabilities. Good-Turing[1] and Witten-Bell[2] are 

two examples of smoothing. They are also called 

discounting because part of the probabilities of existing 

n-grams are taken away and given to non-existent 

3-grams, or zerotons. 

The discounted probability mass can either be 

distributed uniformly or based on some linguistic 

information. With Katz’s backoff method [3], we 

distribute the residual  probability mass proportional to 

the n-1-gram probabilities. [4] has a good summary on 

more recent approaches to discounting. 

Perplexity[5] is used as a measure to judge the 

quality of statistical language models. Perplexity is 2 to 

power of cross-entropy, where cross entropy is defined 

as equation 2. 

 
1..

1.. 1..
1( , ) lim ( )log ( )

n

L n M nn x
H L M P x P x

n→∞
= − ∑  (2) 

L represents the language and M represents the model. 

Perplexity is preferred to cross-entropy, because it is 

more intuitive. Cross entropy (and hence perplexity) will 

be minimized if the estimated probabilities were equal to 

actual probabilities of occurrences. 

 

 

2. Motivation: the lack of right corpus 
 

What motivated this research is simply the lack of 

right corpus. By “right corpus,” we mean sentences from 

the same domain. Further, the corpus should be big 

enough. For instance, to construct a reasonable 3-gram 

model, several million words are generally considered 

barely useable, though a billion words is considered to 

be a saturation point[6]. Some one hundred words will 

probably be considered to be unacceptable.  

 

Table 1. Perplexities of models from various corpora. 

Test text from broadcast news.  

Training  

corpus Size in 

100,000 

words 

1 2 4 8 16 32 

Broadcast 

corpus 
582 567 485 420 331 248

Newspaper 

corpus 
1170 1150 1051 926 793 631

 

As we see in Table 1, the perplexity of a language 

model constructed from a newspaper corpus is 

consistently greater than that of the language model 

constructed from the broadcast news corpus of the same 

size. This means newspaper language and broadcast 

news language are different. Therefore, no matter how 

large the corpus is, you cannot break the barrier of 

inherent perplexity. Unfortunately, it is extremely 

difficult to have corpora of sufficient size for each 

domain, like broadcast news, travel domain, dictation, 

and so on and so forth. 

This granted, what we need then is a way of making 

use of existing information to help lower the perplexity 

of the language model. However, simply merging two 

corpora will not help much, as we shall see later in the 

next section. 

 

 

3. Related Work 
 

Linear combination is probably the simplest way of 

combining two language models as shown in equation 3. 

 
1..

( | ) ( | )combined k k
k n

P w h P w hλ
=

= ∑  (3) 

In this equation, h represents history, w represents a 

word, and n is the number of individual language models. 

The sum 
1..

k
k n

λ
=
∑  should be equal to unity, for the sake 

of consistency. Further, if there are only two information 

sources, equation 3 is simplified as equation 4. 

  1 1 2 2( | ) ( | ) ( | )combinedP w h P w h P w hλ λ= +  (4) 

Rosenfeld[7] points out that the optimal coefficients 

can be found by Expectation-Maximization algorithm. If 

the information sources are only two, determining the  
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Fig. 1. Reduction in perplexity by linear interpolation. 

X axis is the ratio of 1 2:λ λ  from 1:1 to 10. 

Improvements are depicted relative to 1:1 cases. 

 

practical optimum is much easier: just trial and error will 

do practically. 

Linear interpolation has the advantage of extreme 

simplicity. It is easy to implement, easy to compute. 

Linear combination is consistent as far as n-gram 

models are concerned. Fig.1 depicts the reduction in 

perplexity by linear interpolation, for varying 1 2:λ λ  

ratios. 

Maximum entropy method[7] is another option. 

Maximum entropy method gives a consistent solution 

even when the event spaces are not the same. For 

instance, suppose we had an n-gram model probability 

and a trigger pair model probability: ( | , )P bank in the  and 

( | )P bank loan history∈ . When the two conditions are 

both satisfied, that is, the history contained the word 

‘loan’ and previous two words were “in the”, then 
maximum entropy method can find a solution without 

sacrificing the consistency, by imposing that the 

constraints are satisfied on the average. On the other 

hand, linearly combining the two will give out 

inconsistent probabilities. 

However, if we had the same event space, then 

Maximum entropy method will result in trouble.  

1. With maximum entropy method, the expectation, 

  1 ends in 'in the'
[ ( | )] ( | , )combinedh

E P bank h P bank in the= . 

2. Also, by the same token, 

  2 ends in 'in the'
[ ( | )] ( | , )combinedh

E P bank h P bank in the=  

Except by rare coincidence, 1( | , )P bank in the  

2 ( | , )P bank in the≠ , which obviously is a contradiction. 

Therefore maximum entropy method is good only when 

we have different event spaces, but cannot be 

consistently used in our problem. 

Akiba [8] proposed using selective backoff. Their 

approach is similar to ours in that they use backoff with 

two different models. One of the models is probabilistic 

model and the other is a grammar network. The aim of 

their combination is to delete probabilities of all 

unnecessary n-grams, that is, those that are not possible 

word sequences according to the simpler 

grammar-based transition network. 

Adaptation([9], for example) is a dynamic switching of 

language models based on the present situation. 

Adaptation can further be divided into cross-domain 

adaptation and intra-domain adaptation. Cross-domain 

adaptation means switching the language model to a 

different one when the domain has changed. 

Intra-domain adaptation deals with the same domain, but 

even inside the same domain, topics or sub-topics may 

change, or speaker may change, and therefore the 

languages change. While adaptation focuses on 

dynamically detecting the shift among domains or topics, 

our problems deals with constructing a language model 

per se by using information from two models. We can 

create several models using the method proposed in this 

paper and in the process of speech recognition, one may 

change among models (i.e., adapt) depending on the 

current situation. 

 

 

4. Combining two models 
 

We start describing the proposed method by defining a 

few terms. 

A primary corpus is a corpus from a domain of interest. 

A secondary corpus is a (relatively larger) corpus, from 

another domain. A primary language model, then, is a 

language model constructed from a primary corpus. A 

secondary language model is a language model 

constructed from a secondary corpus. 1C  is the primary 

corpus, and 2C is the secondary corpus. 1P  denotes the 

probability obtained by maximum likelihood estimation 

from the primary corpus. 1P  denotes a discounted 

primary probability. 2P  and 2P  are likewise defined. 

We prepared 3-gram models from corpora of various 

sizes. One set used broadcast news script, the other 

newspaper articles. The test data is from a separate text 

from broadcast news. It is not difficult to figure out, 

given the same size, the broadcast news corpora 

(primary corpus, hence primary language model) 

performed better (i.e., lower perplexity).  What is 

interesting in the result is that given the same (or 

roughly the same) perplexity, the 3-gram hit ratio of the 

primary model is significantly lower. Conversely, with 
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similar 3-gram hit ratios, the secondary model has 

significantly higher perplexity. 

The reason for lower 3-gram hit ratio is simple: the 

model is constructed from smaller corpus. Nevertheless, 

it performs better because of the quality of n-gram 

probability distribution. 

Conversely, once again, the secondary model had 

higher 3-gram hit ratio because it was constructed from 

a bigger corpus, but poorer because the difference in the 

language made the probability estimate inadequately 

biased. Then what if we combined the two merits: 

quality n-gram statistics and higher hit ratio. That is the 

basic idea behind our approach. 

 

Table 2. Perplexity and 3-gram his ratio(using 

Cambridge-CMU toolkit v.2, w/ Good-Turing 

discounting, range 1-7-7). 

Test and training corpus from 

same domain (broadcast news) 

Test corpus: broadcast news

Training corpus: newspaper 

articles 

size 
3-gram hit 

ratio 
perplexity size 

3-gram hit 

ratio 
perplexity

100K 14.2 582 100K 7.09 1170.47

200K 17.8 567.16 200K 10.06 1150.5

400K 22.67 485.1 400K 13.38 1051.69

800K 27.89 420.11 800K 17.44 926.91

1600K 34.53 331.07 1600K 23.19 793.34

3200K 42.15 248.19 3200K 29.15 631 

5000K 47.47 200.96 5000K 33.48 543.27

 

From the observations, it follows that by using a 

3-gram probability obtained from the corpus of the same 

domain we can obtain lower perplexity. Then what about 

a 2-gram primary model and a 3-gram secondary 

model? We observed that if the primary model and the 

secondary model used the same size, then the 2-gram 

primary model performed far better than the 3-gram 

secondary model.(Table 3) However, this does not mean 

that 3-gram probabilities in the secondary model is 

useless, since usually secondary model is constructed 

from a far bigger corpus. For instance, a secondary 

2-gram model constructed from a 10,000K size corpus 

outperformed a primary 3-gram model from a 800K size 

corpus. 

 
Table 3. Perplexity measures of 2.3-gram models, 

primary and secondary. 

 Primary model Secondary model 

 2-gram 

model 

3-gram 

model 

2-gram 

model 

3-gram 

model 

100 K 587.75 582 1175.66 1170.47 

200 K 585.09 567.16 1171.96 1150.5 

400 K 514.78 485.1 1083.05 1051.69 

800 K 459.53 420.11 970.69 926.91 

1600 K 386.03 331.07 838.08 793.34 

3200 K 313.25 248.19 694.9 631 

10,000K   526.42 433.58 

20,000K   457.79 348.24 

 

Therefore given appropriate sizes, we may be able to 

take advantage of n-gram probabilities in both models. 

We assumed that the secondary corpus is at least one 

order of magnitude larger than the primary corpus, 

based on the observation in Table 2 and Table 3. Then 

we may conclude that the relative qualities of n-grams 

are: 

3-gram(primary) f  3-gram(secondary) f   

2-gram(primary) f   2-gram(secondary) f  

1-gram(primary) f  1-gram (secondary), 

where the f  stands for the (informal) relation “more 

important.” 
However, a straightforward solution will lead to 

inconsistency. In other words, the conditional 

probabilities do not sum up to unity (i.e.,  

11

2

1 1( | , ) ( | , ) 1
xyz Cxyz C
xyz C

P z x y P z x y
∉∈
∈

+ ≠∑ ∑ ).  

This is where Katz’s idea comes into play. First, we 

note that the n-gram probabilities in the primary model 

is generally either overestimated (when the count is 

greater than zero) or underestimated (when the count is 

zero). Therefore we first discount the MLE probabilities 

of the non-zerotons. Let 
1

11 ( | , )
xyz C

P z x yβ
∈

= − ∑ . Then we 

redistribute the mass to zeroton 3-grams (i.e., the 

3-gram xyz’s, such that 1xyz C∉ ). The redistribution is 

not uniform, but proportional to either secondary 3-gram 

probability or primary 2-gram. Assuming that the 

secondary corpus is larger by at least one order of 

magnitude,  

 

1 1

2 1 1 2

2

( | )                             if 

( | ) ( | )      if  ,

( | )                          otherwise
xy

xy

P z xy xyz C

P z xy P z xy xyz C xyz C

P z y

α γ
α γ

⎧ ∈
⎪⎪= ∉ ∈⎨
⎪
⎪⎩

 (4) 

1γ  and 2γ  are coefficients that reflect the relative 

importance of secondary 3-gram and primary 2-gram. 

However, we experienced these values other than 1:1 

yielded no significant improvement, and equation 4’ will 

be used instead.  

 

1 1

2 1 2

( | )                             if 

( | ) ( | )     if  ,

( | )                         otherwise
xy

xy

P z xy xyz C

P z xy P z xy xyz C xyz C

P z y

α
α

⎧ ∈
⎪⎪= ∉ ∈⎨
⎪
⎪⎩

 (4’) 
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In the above formula, xyα  is a normalizing constant 

such that ( | ) 1
xyz

P z xy =∑ . Therefore 

 

1 1

2 2

2 ( | ) ( | )xy

xyz C xyz C
xyz C xyz C

P z xy P z y
βα

∉ ∉
∈ ∉

=
+∑ ∑

 (5) 

Unlike Katz’s coefficients, there is no simple 

computation procedure for xyα , and thus repeated 

summation is required, which took hours in a machine 

with two Xeon 2GHz processors. Fortunately, the 

calculation needs to be done only once and it need not 

be calculated in real-time. 

The 2-gram probability ( | )P z y  is recursively defined 

in a similar manner. 

 

1 1

2 1 1 2

2

( | )                     if 

( | ) ( | )      if ,

( )                          otherwise
y

y

P z y yz C

P z y P z y yz C yz C

P z

α δ
α δ

⎧ ∈⎪⎪= ∉ ∈⎨
⎪
⎪⎩

 (6) 

or by the same reason equation 4’ replaced 4, we use 

equation 6. 

 

1 1

2 1 2

( | )                     if 

( | ) ( | )     if ,

( )                        otherwise
y

y

P z y yz C

P z y P z y yz C yz C

P z

α
α

⎧ ∈⎪⎪= ∉ ∈⎨
⎪
⎪⎩

 (6’) 

Finally, 1-gram probability can also be defined in a 

similar fashion. 

 

1 1

20 1 2

0

( )                     if 

( ) ( )     if ,
                        otherwise

P z z C

P z P z z C z Cα
α

⎧ ∈⎪⎪= ∉ ∈⎨
⎪ ′
⎪⎩

 (7) 

For practical purposes, equation 7 may be simplified to 

either 8 or 9. 

 
1 21 2

'
0

( ) ( )( )
      otherwise  
P z P zP z λ λ

α
⎧ +⎪= ⎨
⎪⎩

 (8) 

 
1

'
0

( )                  ( )
      otherwise  

P zP z
α
⎧⎪= ⎨
⎪⎩

 (9) 

 

 

5. Results 
 

We used CMU-Cambridge toolkit to construct 

secondary models in ARPA-format from  a newspaper 

corpus (Dong A Ilbo news) from 4 million to 8 million 

words. We also constructed 4 primary models from SBS 

broadcast news (100K to 400K words). Test corpus was 

a separate SBS broadcast news text of 10K size. 

By simply mixing up primary and secondary models, 

we obtained 10 to 17 percent decrease in perplexity.  

With optimal mixing ratio by linear interpolation, 

additional 5 to 6 % decrease is seen (see Fig.1). The 

result of the dual-source experiment showed around 

30% decrease in perplexity (see Table 4). Considering 

that 20% decrease in perplexity shows notable increase 

in the accuracy of the speech recognizer, this can be 

regarded a meaningful result. 

 
Table 4. Resulting Perplexity of interpolated model 

and dual-source backoff model. 

Mixture of primary 

and secondary 

Linear Interpolation 
(1:1) 

dual-source 
backoff 

100K/4M 377 242 

200K/5M 359 244 

300K/6M 333 230 

400K/8M 300 206 

 

 

6. Conclusion and Future Work 
 

The experiment clearly showed that there is 

improvement. However, it is not certain if this is indeed 

the optimal.  As we discussed earlier the relative quality 

of the primary and the secondary n-grams depend on 

the corpora sizes. For instance, if the size of the primary 

corpus is very small compared to the secondary model, 

the secondary 2-gram probability may prove to be more 

reliable than the primary 3-gram. 

 
Table 5. Enhancement in average log probabilities. 

 Case 1 Case 2 Case 3 Case 4 Case 5 Etc.
Case 1 0 0 0 0 0 … 
Case 2 0 0 -27.5 0 -118 … 
Case 3 0 0 18.5 0 0 … 
Case 4 0 0 0 0 -78.7 … 
Case 5 0 0 0 0 17.59 … 

Etc. … … … … … … 
 

Table 5 shows how 3-gram log probabilities average 

in each case. Row and column headings represent case 

numbers, top heading for dual-source backoff and side 

heading for Katz’s style original backoff. For instance, 
case 1 means the 3-gram exists in the primary corpus. 

Case 2 means the 3-gram does not appear in primary 

corpus but appears in secondary corpus, and so on. 

Therefore –27.5 in row 2 column 3 means the average 

log probabilities of next words (where Katz’s method 

used 2-gram and the proposed method used 3-gram 

from secondary corpus) were enhanced by –27.5. 
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Negative numbers indicate average log probability 

decreased and positive numbers indicate the reverse. 

Even though as a whole the average decreased, in some 

cases it turned out to the opposite. This may indicate 

there are possibilities for further enhancement.  

Lastly, the algorithm needs to be generalized to 

n-gram models of arbitrary n values. Theoretically, it 

seems possible. However, the real problem is in 

determining the order of applications. This is not merely 

a theoretical a problem, but a practical one, since it may 

well depend on the sizes of the corpora – relative or 
absolute – and also on the similarity among primary, 

secondary, and the test corpora. 
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1997년 2월 : 서울대학교 전산과학과  

석사   

2002년 8월 : 서울대학교  

전기컴퓨터공학부 박사  

2002년 3월-2004년 2월 : 삼성전자  

소프트웨어센터 책임연구원  

2004년 3월-현재 명지대학교 컴퓨터소프트웨어학과  

조교수  

 

관심분야 : 지능형시스템, 데이터베이스, 객체지향 시스템 

Email : tschung@mju.ac.kr 

 


