Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.465-468
/
2023
디퓨전 모델에서 생성한 이미지를 조작하는 기존 프롬프트 기반 방법과 포인트 기반 방법에는 각각의 단점이 있다. 프롬프트 기반은 프롬프트로만 조작이 가능하고 세세하지 못하다. 포인트 기반은 입력 이미지의 스타일을 보존하려면 파인튜닝이 필요하다. 본 논문은 디퓨전 생성 모델에 셀프 어텐션 제어와 드래그 조작을 통해, 파라미터 학습 없이, 이미지의 스타일을 보존하며 다양한 범위의 이미지 조작이 가능한 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.377-380
/
2018
인간의 추론 능력이란 문제에 주어진 조건을 보고 문제 해결에 필요한 것이 무엇인지를 논리적으로 생각해 보는 것으로 문제 상황 속에서 일정한 규칙이나 성질을 발견하고 이를 수학적인 방법으로 법칙을 찾아내거나 해결하는 능력을 말한다. 이러한 인간인지 능력과 유사한 인공지능 시스템을 개발하는데 있어서 핵심적 도전은 비구조적 데이터(unstructured data)로부터 그 개체들(object)과 그들간의 관계(relation)에 대해 추론하는 능력을 부여하는 것이라고 할 수 있다. 지금까지 딥러닝(deep learning) 방법은 구조화 되지 않은 데이터로부터 문제를 해결하는 엄청난 진보를 가져왔지만, 명시적으로 개체간의 관계를 고려하지 않고 이를 수행해왔다. 최근 발표된 구조화되지 않은 데이터로부터 복잡한 관계 추론을 수행하는 심층신경망(deep neural networks)은 관계추론(relational reasoning)의 시도를 이해하는데 기대할 만한 접근법을 보여주고 있다. 그 첫 번째는 관계추론을 위한 간단한 신경망 모듈(A simple neural network module for relational reasoning) 인 RN(Relation Networks)이고, 두 번째는 시각적 관찰을 기반으로 실제대상의 미래 상태를 예측하는 범용 목적의 VIN(Visual Interaction Networks)이다. 관계 추론을 수행하는 이들 심층신경망(deep neural networks)은 세상을 객체(objects)와 그들의 관계(their relations)라는 체계로 분해하고, 신경망(neural networks)이 피상적으로는 매우 달라 보이지만 근본적으로는 공통관계를 갖는 장면들에 대하여 객체와 관계라는 새로운 결합(combinations)을 일반화할 수 있는 강력한 추론 능력(powerful ability to reason)을 보유할 수 있다는 것을 보여주고 있다. 본 논문에서는 관계 추론을 수행하는 심층신경망(deep neural networks) 중에서 Sort-of-CLEVR 데이터 셋(dataset)을 사용하여 RN(Relation Networks)의 성능을 재현 및 관찰해 보았으며, 더 나아가 파라미터(parameters) 튜닝을 통하여 RN(Relation Networks) 모델의 성능 개선방법을 제시하여 보았다.
본 연구는 관성의 변화, 비선형 마찰 등에 견실한 피드포워드 적응 위치제어기를 제안한다. 제안된 적응 위치제어기의 특징은 제어기 적응파라미터가 위치오차에 기준모델의 속도 정보를 받아들여 셀프 튜닝된다. 이것은 과도응답 특성을 향상시키고, 정상상태의 수렴 시간을 줄여 시스템의 성능을 개선시킨다. 시뮬레이션을 통하여 제안된 피드포워드 적응 위치제어기의 동작과 설계 방법의 타당성을 보였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.77-81
/
2022
최근 사전학습 언어모델에 내재된 지식을 최대한으로 활용하고자 태스크에 대한 설명을 입력으로 주는 manual prompt tuning 방법과 자연어 대신 학습가능한 파라미터로 태스크에 대한 이해를 돕는 soft prompt tuning 방법론이 자연어처리 분야에서 활발히 연구가 진행되고 있다. 이에 본 연구에서는 페르소나 대화 생성 태스크에서 encoder-decoder 구조 기반의 사전학습 언어모델 BART를 활용하여 manual prompt tuning 및 soft prompt tuning 방법을 고안하고, 파인튜닝과의 성능을 비교한다. 전체 학습 데이터에 대한 실험 뿐 아니라, few-shot 세팅에서의 성능을 확인한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.9-16
/
2018
Predictive control is a very practical method that obtain the current input that minimizes the future errors of the reference command and state by use of the predictive model of the controlled object, and can also consider the constraints of the state and input. Although there have been studies in which predictive control is applied to mobile robots, performance has not been optimized as various control parameters for determining control performance have been arbitrarily specified. In this paper, we apply the genetic algorithm to the trajectory tracking control of a mobile robot with input constraints in order to minimize the trajectory tracking errors through control parameter tuning, and apply the quadratic programming Hildreth method to reflect the input constraints. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.164-167
/
2006
본 논문에서는 불확실한 비선형 시스템에 대한 적응 퍼지 슬라이딩 모드 제어기를 설계한다. 불확실한 비선형 시스템에서 발생할 수 있는 파라미터의 변화를 대처하기 위해서 적응 퍼지 이론을 이용하였고, 외란으로 인한 불확실성을 슬라이딩 모드의 제어기를 통해서 해결하였다. 또한 퍼지 튜닝을 통해 슬라이딩 조건을 가변화함으로써 기존의 슬라이딩 모드 제어기에 비해 빠르고 정확하게 추종 가능하도록 제어기의 성능을 향상시킨다. 제안하는 제어기는 정확한 동역학 모델의 구현이 어렵고 복잡한 비선형 시스템에 외란 특성이 우수한 슬라이딩 모드와 실제 시스템을 표현하는 범용 근사자로 유용성이 입증된 퍼지 시스템을 이용하여 간단하고 쉽게 제어할 수 있도록 하였다. Lyapunov이론을 통하여 전역적인 안정화를 보이며, 마지막으로 역진자 시스템에 적용하여 제안된 제어기의 성능을 검증한다.
최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.
In this paper, we analyze the performance of the parity cache enabled RAID level-5 via the simulation. This RAID system consists of the DDR memory-based storage devices. To do this, we develop the simulation model and suggest the basic performance analysis data which we want to get via the simulation. And we implement the simulator based on the simulation model and execute the simulator. From the result of the simulation, we expect that the parity cache enabled RAID level-5 configured by the DDR memory based storage devices has the positive effectiveness to the enhancing of the storage system performance if the storage access patterns of applications are tuned.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.394-396
/
2021
Additional pathological tests using imaging equipment are essential before diagnosing cancer cells. Recently, in order to reduce the need for time and human resources in these fields, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, in both previous studies, there were relatively limited deep learning algorithms and cell types, and limitations existed with low accuracy at the same time. In this study, a method of performing 4class Classification on four types of cancer cells through the Convolution Neral Network, a type of in-depth learning. EfficientNet, ResNet, and Inception were used, and finally Resnet was used to obtain an accuracy of 96.11 on average for k-fold.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.1
/
pp.71-80
/
2013
According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.