• Title/Summary/Keyword: 모델 자동 산출

Search Result 92, Processing Time 0.022 seconds

A Study on Near-miss Incidents from Maritime Traffic Flow by Clustering Vessel Positions (선박위치 클러스터링을 활용한 해상교통 근접사고 산출에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.603-608
    • /
    • 2014
  • In the maritime traffic environment, the near-miss between vessels is the situation approaching on collision course but collision accident is not occurred. In this study, in order to calculate the near-miss between navigating vessels, the discriminating equation using ship bumper theory and vessel position clustering methods are proposed. Applying proposed module to the vessel trajectories of the WANDO waterway, we assessment navigational risk factors of vessel type, navigational speed, meeting situation.

Building and Analyzing Panic Disorder Social Media Corpus for Automatic Deep Learning Classification Model (딥러닝 자동 분류 모델을 위한 공황장애 소셜미디어 코퍼스 구축 및 분석)

  • Lee, Soobin;Kim, Seongdeok;Lee, Juhee;Ko, Youngsoo;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.153-172
    • /
    • 2021
  • This study is to create a deep learning based classification model to examine the characteristics of panic disorder and to classify the panic disorder tendency literature by the panic disorder corpus constructed for the present study. For this purpose, 5,884 documents of the panic disorder corpus collected from social media were directly annotated based on the mental disease diagnosis manual and were classified into panic disorder-prone and non-panic-disorder documents. Then, TF-IDF scores were calculated and word co-occurrence analysis was performed to analyze the lexical characteristics of the corpus. In addition, the co-occurrence between the symptom frequency measurement and the annotated symptom was calculated to analyze the characteristics of panic disorder symptoms and the relationship between symptoms. We also conducted the performance evaluation for a deep learning based classification model. Three pre-trained models, BERT multi-lingual, KoBERT, and KcBERT, were adopted for classification model, and KcBERT showed the best performance among them. This study demonstrated that it can help early diagnosis and treatment of people suffering from related symptoms by examining the characteristics of panic disorder and expand the field of mental illness research to social media.

Fuzzy Model for Speech Emotion Recognition (음성으로부터의 감정 인식을 위한 퍼지모델 제안)

  • Moon, Byung-Hyun;Jang, In-Hoon;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.115-118
    • /
    • 2008
  • 본 논문에서는 음성으로부터 감정을 인식하고 감성적인 운율로 음성 출력을 산출해 내는 시스템을 제안 한다. 음성적인 운율로부터 감정을 인식하기 위해서 퍼지룰(rule)을 이용한다. 본 논문에서 감정 인식 시스템은 음성 샘플들로 학습 데이터를 구축하고 이를 기반으로 하여 추출된 20개의 특징 집합으로부터 가장 중요한 특징들을 자동적으로 선택한다. 화남, 놀람, 행복, 슬픔, 보통의 5가지 감정 상태를 구분하기 위하여 접근법에 기반한 퍼지를 이용하였다.

  • PDF

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

The research on the design and management on space and wiring of telecommunication equipment (통신 시설물의 상면 및 배선 설계관리 방안에 관한 연구)

  • Jeong Hyun-Ho;Min Kyoung-Seon;Lee Yong-Gi;Lee Young-Wuk;Kim Byung-Jae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.234-236
    • /
    • 2004
  • 현재 전화국 통신 시설물에 대한 상면 배치 및 배선의 설계와 공사 업무의 관리는 2차원 도면 설계 툴과 별도의 물자 산출 툴에 의해 수행되고 있다. 사용자 편의를 고려한 3차원 도면 설계 툴이 있기는 하지만 통신 시설물 공사에 최적화된 툴은 없으며 주로 기계 설계나 금형 설계 작업에서 부분적으로 사용되고 있는 실정이다. 본 논문에서는 실제 환경에 가까운 3차원 그래픽 사용자 인터페이스에 의한 도면 설계 기능, 설계된 도면 DB와 물자 단가 DB의 연동을 통한 소요 물자의 자동 산출 기능 등을 수행하는 시스템 모델의 개념을 제시하고 개발 현황을 소개하고자 한다. 본 논문에서 소개된 시스템을 통해 전화국 통신 시설물에 대한 설계와 공사 업무의 편리화, 자동화, 일원화를 이룰 수 있을 것이다.

  • PDF

최소신장트리를 이용한 흑점군 자동분석 프로그램 개발

  • Park, Jong-Yeop;Mun, Yong-Jae;Choe, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.130.2-130.2
    • /
    • 2012
  • 태양의 활동영역에서 관측할 수 있는 흑점은 주로 흑점군으로 관측되며, 태양폭발현상의 발생을 예보하기 위한 중요한 관측 대상 중 하나이다. 현재 태양 폭발을 예보하는 모델들은 McIntosh 흑점군 분류법을 사용하며 통계적 모델과 기계학습 모델로 나누어진다. 컴퓨터는 흑점군의 형태학적 특성을 연속적인 값으로 계산하지만 흑점군의 형태적 다양성으로 인해 McIntosh 분류를 잘못 분류할 수도 있다. 이러한 이유로 컴퓨터가 계산한 흑점군의 형태학적인 특성을 예보에 직접 적용하는 것이 필요하다. 우리는 흑점군의 형태학적인 특성(개수, 면적, 면적비 등)과 함께 모든 흑점을 정점(Vertex)으로 하고 그 사이를 연결하는 간선(Edge)으로 하는 간선의 거리 합이 최소인 최소신장트리(Minimum spanning tree : MST)를 작성하였다. 이 최소신장트리를 사용하여 흑점군을 검출하고 가장 면적이 큰 정점을 중심으로 트리의 깊이(Depth)와 차수(Degree)를 계산하였다. 이 방법을 2003년 SOHO/MDI의 태양 가시광 영상에 적용하여 구한 흑점군의 내부 흑점수와 면적은 NOAA에서 산출한 값들과 90%, 99%의 좋은 상관관계를 가졌다. 우리는 이 연구를 통해 흑점군의 형태학적인 특성과 더불어 예보에 직접적으로 활용할 수 있는 방법을 논의하고자 한다.

  • PDF

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

Development of a self-convergent finite element code for semiconductor analysis (자동수렴성을 갖는 반도체 유한요소 해석 프로그램 개발)

  • Choi, Kyung
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 1993
  • 유한요소법을 이용하여 반도체 해석을 하는 경우 국부적인 overshoot, 진동 및 해의 발산등의 문제점등이 발생하기 쉽다. 이는 지배방정식의 특성에 좌우되는 경우가 많은데 특히 반도체 전류연속 방정식을 처리하는 데는 그 해석이 매우 불안정하다. 본 연구에서는 유한요소법을 반도체 해석에 적용하는 경우 해의 발산원인을 적용 방정식의 수치적 안정도 검사에 의하여 도출하였으며 이 요인이 요소상수 m의 값에 좌우됨을 밝혔다. 또한 요소상수가 후치조작에 의해서만 계산될 수 있는 단점을 보완하기 위하여 적응요소법을 도입하여 프로그램으로 구현함으로써 임의의 초기 요소망과 초기치에 대해서도 자동적으로 해의 수렴을 얻을 수 있는 적응해석 프로그램을 개발하였다. 본 프로그램의 효용성을 검증하기 위하여 GaAs MESFET 모델을 선정하여 계산하였고 산출 결과를 검토해 본 결과 임의의 초기치에 대해서도 강인한 수렴성을 얻을 수 있었으며 요소 분할이 필요한 부위에만 집중됨으로써 비교적 적은 수의 요소만으로도 해를 얻을 수 있음을 확인하였다.

  • PDF

Implementation of an Intelligent Automatic Parking Assist System (지능형 자동 주차 지원 시스템의 구현)

  • Park Cheong-Sool;Han Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.182-190
    • /
    • 2005
  • In the paper, we propose an intelligent automatic parking assist system. To realize an automatic parking, first, the prospective parking position and the location of a vehicle should be recognized. Second, the system should compute a path which introduces the parking position precisely with avoiding any obstacles. Third, the handle should be controlled so that the vehicle moves through the path. To calculate the location of the vehicle and its surroundings, the system applies the camera image method to transforming input images to the plane map. It also uses the inertial navigation method which recognizes the position and the direction of a moving vehicle by using a kinematic model of the vehicle. To generate a path of the vehicle, the simple path method and the Bezier spline method are tested. The divided arc method which generates multiple paths is also tested. We apply a method which makes the system choose the best path with multiple objective functions. We introduce the virtual road method, as a solution for the problem of mechanical time delay, to have the vehicle followed the designated path.

  • PDF