• Title/Summary/Keyword: 모델 앙상블

Search Result 310, Processing Time 0.026 seconds

Proposal of a Learning Model for Mobile App Malicious Code Analysis (모바일 앱 악성코드 분석을 위한 학습모델 제안)

  • Bae, Se-jin;Choi, Young-ryul;Rhee, Jung-soo;Baik, Nam-kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.455-457
    • /
    • 2021
  • App is used on mobile devices such as smartphones and also has malicious code, which can be divided into normal and malicious depending on the presence or absence of hacking codes. Because there are many kind of malware, it is difficult to detect directly, we propose a method to detect malicious app using AI. Most of the existing methods are to detect malicious app by extracting features from malicious app. However, the number of types have increased exponentially, making it impossible to detect malicious code. Therefore, we would like to propose two more methods besides detecting malicious app by extracting features from most existing malicious app. The first method is to learn normal app to extract normal's features, as opposed to the existing method of learning malicious app and find abnormalities (malicious app). The second one is an 'ensemble technique' that combines the existing method with the first proposal. These two methods need to be studied so that they can be used in future mobile environment.

  • PDF

Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis (데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반)

  • Hyun-Jong Kim;Sung-Keun Kim;Byoung-Whan Chun;Kyong-Bog, Jin;Seung-Jeong Yang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • Various methods using machine learning and big data have been applied to prevent failures in Data Centers. However, there are many limitations to referencing individual equipment-based performance indicators or to being practically utilized as an approach that does not consider the infrastructure operating environment. In this study, the performance indicators of individual infrastructure equipment are integrated monitoring and the performance indicators of various equipment are segmented and graded to make a single numerical value. Data pre-processing based on experience in infrastructure operation. And an ensemble of RRCF (Robust Random Cut Forest) analysis and Prophet analysis model led to reliable analysis results in detecting anomalies. A failure analysis system was implemented to facilitate the use of Data Center operators. It can provide a preemptive response to Data Center failures and an appropriate tuning time.

A Study on Observation of Lunar Permanently Shadowed Regions Using GAN (GAN을 이용한 달의 영구 그림자 영역 관찰에 관한 연구)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Lee, Han-Sung;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.520-523
    • /
    • 2022
  • 일본 우주항공연구개발기구(Japan Aerospace Exploration Agency, JAXA)는 2007년부터 2017년까지 달 탐사선 셀레네(Selenological and Engineering Explorer, SelEnE)가 관측한 데이터를 수집하고, 연구했다. JAXA는 지구 상층 대기에 존재하는 산소가 자기장의 꼬리 부분에 실려 달로 이동한다는 사실을 발견했다. 하지만 이 연구는 아직 진행 중이며 달의 산화 과정 규명에 추가 연구가 필요하다. 본 논문에서는 생성적 적대 신경망(Generative Adversarial Networks, GAN)으로 달 분화구의 영구 그림자 영역을 제거하고, 물과 얼음을 발견하여 선행 연구의 완성도를 향상하고자 한다. 실험에 사용할 모델은 CIPS(Conditionally Independent Pixel Synthesis)다. CIPS는 실제 같은 영상을 고해상도로 합성한다. 합성할 데이터의 최적인 가중치 초기화 및 파라미터 갱신 방법, 활성 함수 조합은 실험을 통해 확인한다. 필요에 따라 앙상블 학습을 할 수도 있다. 성능평가는 FID(Frechet Inception Distance), 정밀도, 재현율을 사용한다. 제안한 방법은 진행 중인 연구의 시간과 비용을 절약하고, 인과관계를 더욱 명확히 밝히는 데 도움 될 수 있다고 사료된다.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration (소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구)

  • An, Dong-Uk;Leem, Choon Seong
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 2019
  • Recently, the crime that utilizes the digital platform is continuously increasing. About 140,000 cases occurred in 2015 and about 150,000 cases occurred in 2016. Therefore, it is considered that there is a limit handling those online crimes by old-fashioned investigation techniques. Investigators' manual online search and cognitive investigation methods those are broadly used today are not enough to proactively cope with rapid changing civil crimes. In addition, the characteristics of the content that is posted to unspecified users of social media makes investigations more difficult. This study suggests the site-based collection and the Open API among the content web collection methods considering the characteristics of the online media where the infringement crimes occur. Since illegal content is published and deleted quickly, and new words and alterations are generated quickly and variously, it is difficult to recognize them quickly by dictionary-based morphological analysis registered manually. In order to solve this problem, we propose a tokenizing method in the existing dictionary-based morphological analysis through WPM (Word Piece Model), which is a data preprocessing method for quick recognizing and responding to illegal contents posting online infringement crimes. In the analysis of data, the optimal precision is verified through the Vote-based ensemble method by utilizing a classification learning model based on supervised learning for the investigation of illegal contents. This study utilizes a sorting algorithm model centering on illegal multilevel business cases to proactively recognize crimes invading the public economy, and presents an empirical study to effectively deal with social data collection and content investigation.

  • PDF

Exploring Feature Selection Methods for Effective Emotion Mining (효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • In the era of SNS, many people relies on it to express their emotions about various kinds of products and services. Therefore, for the companies eagerly seeking to investigate how their products and services are perceived in the market, emotion mining tasks using dataset from SNSs become important much more than ever. Basically, emotion mining is a branch of sentiment analysis which is based on BOW (bag-of-words) and TF-IDF. However, there are few studies on the emotion mining which adopt feature selection (FS) methods to look for optimal set of features ensuring better results. In this sense, this study aims to propose FS methods to conduct emotion mining tasks more effectively with better outcomes. This study uses Twitter and SemEval2007 dataset for the sake of emotion mining experiments. We applied three FS methods such as CFS (Correlation based FS), IG (Information Gain), and ReliefF. Emotion mining results were obtained from applying the selected features to nine classifiers. When applying DT (decision tree) to Tweet dataset, accuracy increases with CFS, IG, and ReliefF methods. When applying LR (logistic regression) to SemEval2007 dataset, accuracy increases with ReliefF method.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.