• Title/Summary/Keyword: 모델제어

Search Result 5,487, Processing Time 0.035 seconds

The Dynamic Group Authentication for P2P based Mobile Commerce (P2P 기반의 모바일 상거래를 위한 동적 그룹 인증)

  • Yun, Sunghyun
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.335-341
    • /
    • 2014
  • To play the networked video contents in a client's mobile device in real time, the contents should be delivered to it by the contents server with streaming technology. Generally, in a server-client based commerce model, the server is in charge of both the authentication of the paid customer and distribution of the contents. The drawback of it is that if the customers' requests go on growing rapidly, the service quality would be degraded results from the problems of overloaded server or restricted network bandwidth. On the contrary, in P2P based networks, more and more the demand for service increasing, the service quality is upgraded since a customer can act as a server. But, in the P2P based network, there are too many servers to manage, it's possible to distribute illegal contents because the P2P protocol cannot control distributed servers. Thus, it's not suitable for commercial purposes. In this paper, the dymanic group authentication scheme is proposed which is suited to P2P based applications. The proposed scheme consists of group based key generation, key update, signature generation and verification protocols. It can control the seeder's state whether the seeder is joining or leaving the network, and it can be applied to hybrid P2P based commerce model where sales transactions are covered by the index server and the contents are distributed by the P2P protocol.

Performance Evaluation of the MAC Protocols for WDM Metro Ring with Wavelength-Shared Nodes Connecting Broadband Access Networks (대역 액세스 망을 연결하는 파장 공유 노드 기반 WDM 메트로 링의 MAC 프로토콜 성능 평가)

  • So Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.111-120
    • /
    • 2006
  • In this paper, a node architecture of WDM metro network for connecting broadband access networks to converge wire/wireless networks. In consideration of the proposed node architecture and network requirements we proposed and evaluated medium access control protocols. We review WDM related technologies of sub-carrier multiplexing and optical components in order to resolve the bottleneck between optical backbone networks md access networks, and a access node architecture sharing common wavelength is introduced. Source-stripping (SS) MAC protocol Is evaluated under the proposed functional node architecture. DS+IS (Destination-Stripping and Source-Stripping) and DS+IS (Destination-Stripping and Intermediate-Stripping) MAC protocols are described to increase the slot-reuse factor which is low on SS MAC protocol. The key function of new MAC protocols regards the optical switch module of proposed node architecture and helps intermediate or source access nodes for dropping slots to destinations of different wavelength group. Thus, slot-reuse factor increases as the MAC protocols reduce the unnecessary ring-rotation of transferred slots. We use a numerical analysis to expect bandwidth efficiency and maximum throughput by slot-reuse factor Throughput network simulation, the verification of throughput, queuing delay, and transmission fairness are compared among MAC protocols.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Dispersion Pattern Simulation of Tungsten Impactors According to Mass and Shape of Explosives (폭약 질량과 형상에 따른 텅스텐 충격자의 분산 패턴 시뮬레이션)

  • Sakong, Jae;Woo, Sung-Choong;Bae, Yong-Woon;Choi, Yeoun-Jin;Cha, Jung-Phil;Ga, In-Han;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1325-1333
    • /
    • 2014
  • The dispersion pattern of a near miss neutralizer has a great effect on the disablement of a threatening projectile. This study numerically investigated the dispersion pattern of cylindrical tungsten impactors by an explosion in the near miss neutralizer. The mass and shape of the explosive were considered as influencing factors on the dispersion pattern. The explosives were set using two shape models: a parallel shape with the same upper and lower thicknesses and a tapered shape with different upper and lower thicknesses. In the simulation results, the dispersed impactors formed a ring-shaped pattern on a two-dimensional plane in an arbitrary space. In addition, the fire net area increased with the explosive mass when the explosive shapes were identical. In particular, the tapered shape explosive formed a larger fire net area than the parallel shape explosive. Based on the analysis of the fire net area along with the dispersion density, both the explosive mass and shape representing the physical characteristics should be considered for controlling the dispersion pattern of impactors in a near miss neutralizer.

Relationship between Restoring Force and Typical Stroke with SMA Coil Spring in Electrosurgical Knee Wand (슬관절 수술용 전기소작완드에 적용되는 형상기억합금 코일스프링의 회복력 및 행정거리의 관계)

  • Yang, Young-Gyu;Han, Gi-Bong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1301-1307
    • /
    • 2011
  • Electrosurgical knee wand (EKW) is a high-frequency thermocautery instrument and is often used for coagulation, ablation, excision, and extirpation of knee ligaments and tissues. In order to maximize the success rate, ease, and safety of knee surgery using EKW and radiofrequency ablation, it is necessary to ensure that the EKW selectively approaches the lesion with utmost accuracy and safety. The key feature of this instrument is its excellent maneuverability. Hence, the authors constructed a tensile spring model based on a shape memory alloy (SMA), which exhibits the shape memory effect. This model can be used in knee surgery as it is considered the most biocompatible femorotibial surgical actuator. The changes in external temperature with current and the thermoelectric characteristics of the SMA were investigated. The relationship between the restoring force and the typical stroke (TS) in response to the conditions in the SMA tensile spring design were evaluated. In conclusion, as the diameter of the SMA tensile spring decreased, the maximum temperature increased. The strain in the actuator caused a stable and proportional increase in the force and induced current for up to 15s, but this increase became very unstable after 30s. Moreover, the relationship between the current and the TS was more stable than that between the current and the restoring force.

RBAC-based health care service platform for individual recommended health information service (RBAC에 기반한 개인 맞춤형 건강 정보 제공 헬스케어 서비스 플랫폼)

  • Song, Je-Min;Kim, Myung-Sic;Jeong, Kyeong-Ja;Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1740-1748
    • /
    • 2014
  • In this paper, we propose an RBAC based personalized health care service platform in order to provide smart management of personal health record using smart devices. It helps to guide healthful service and provide useful information according to one's individual health record. Personalized health care services platform supports a healthy lifestyle by measuring personal health information in a hospital clinical, imaging, and drug data, as well as that can be obtained from smart devices. Everyone can enter his health related data in everyday life such as food, sleeping time, mood, movement and exercise so that one can manage his personal health information of modern smart features. In addition, if necessary, personal health information can be provided to the hospital information system and staff with the consent of the individual. It can be contributed to simplify the complex process for remote medical. The proposed platform, which applies role based access control model to protect security and privacy, supports a smart health care services for users by providing personalized health care services through the smart applications.

Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending (휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Changbin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • The purpose of this paper is to investigate the flexural behavior of high-strength steel fiber-reinforced concrete beams with compressive strength of 130 MPa. The paper presents experimental research results of steel fiber-reinforced concrete beams with steel fiber content of 1.0% by volume and steel reinforcement ratio of less than 0.02. Both of normal-strength rebar and high-strength rebar were used in the test beams. Modeling as well as compressive and tensile strength test of high-strength steel fiber-reinforced concrete was performed to predict the bending strength of concrete beams. Tension modeling was performed by using inverse analysis in which load-crack mouth opening displacement relationship was considered. The experimental results show that high-strength steel fiber-reinforced concrete beams and the addition of high-strength rebar is in favor of cracking resistance and ductile behavior of beams. For beams reinforced with normal-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.81 to 1.42, whereas for beams reinforced with high-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.92 to 1.07. The comparison of bending strength from numerical analysis with the test results showed a reasonable agreement.

Modified SBEACH Model for Predicting Erosion and Accretion in front of Seadike (수정 SBEACH 모델에 의한 호안 전면의 침퇴적 예측)

  • Han, Jae-Myong;Kim, Kyu-Han;Shin, Sung-Won;Deguchi, Ichiro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.482-488
    • /
    • 2011
  • Seadike is a coastal structure constructed in the rear region of the foreshore to maximize its usability by preventing direct effect of wave. The expected construction field is determined under the design wave and tidal condition where minor wave overtopping is anticipated. Thus, the location of seadike is generally fixed at the highest site of the surrounding area with seadike crest height controlling the permissible range of wave overtopping volume. But a lot of times, frontal sand beach of the seadike continuously deforms due to incident waves, resulting failure in maintaining its initial slope. The erosion and deposition of the seadike front cause changes in the crest height and volume of wave overtopping and decrease in the setting depth of the seadike, which endangers seadike region as a result. In this study, the relation of local scouring and setting depth of the seadike front in the run-up region is examined by using 2D hydraulic model tests and numerical simulations by modified SBEACH model. As a result, the study learned that if appropriate boundary condition is applied to the modified SBEACH model, it is possible to create practical estimations on the local scouring at the seadike foot when erosive waves flow into the region.

Mechanical Properties and Failure Behavior of Grouting Cements for a $CO_2$-Injection Hole (이산화탄소 주입공 그라우팅 시멘트의 역학적 물성 및 파괴 거동)

  • Park, Mi-Hee;Chang, Chan-Dong;Jo, Yeong-Uk;Choo, Min-Kyoung;Yum, Byoung-Woo
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • We conducted laboratory experiments to determine the physical and mechanical properties, and the failure behaviors, of cements for use as grouting material in a $CO_2$-injection borehole. Samples with lour different ratios of water to cement mass (0.4, 1, 2, and 3) were tested. The analyzed properties (porosity, sonic velocity, modulus, and compressive and tensile strengths) varied systematically as a function of the ratio of water to cement (w/c), showing a sharp change between w/c ratios of 0.4 and 1. Triaxial compression tests revealed a clear boundary between brittle and ductile failure depending on the w/c ratio and confining pressure. The present results can be utilized as input parameters for numerical models to understand the initial deformation and failure behavior of grouting cements in a $CO_2$-injection borehole.