지난 수년간 정보화수준 및 투자효과분석을 위한 많은 연구가 진행되고, 실제 평가가 수행되었음에도 불구하고 여전히 정보화 수준을 객관적으로 평가하기 위한 평가모델이 요구되고있다. 특히 조직이나 사업의 정보화 목표에 맞게 정보화를 진단할 수 있는 평가방법론이 필요하다. 기존의 기업 정보화수준 평가모델의 경우 업종별로 다른 평가 모델을 적용하지만, 이 경우에도 업종 외에 해당 조직의 정보화 목표 및 범위에 대한 요소를 중요하게 고려하지 않았다. 정보화 평가모델은 크게 조직 중심의 전반적인 정보화 수준을 평가하는 모델과 투자한 사업에 대한 투자 효과를 분석하기 위한 모델로 나눌 수 있다. 두 개의 모델은 조직 또는 사업의 정보화 목표에 맞게 정보화가 진행되었는지를 평가하며, 평가한 결과를 피평가 조직에 피드백하여 차기 정보화 사업 추진에 활용하게 된다. 본 연구에서는 국방 분야의 여러 가지 특성을 고려한 정보화 평가모델의 구축 방법론을 제안하고, 평가의 유형 중에서 정보화 수준 평가 모델의 적용 방안에 대하여 논의하였다.
본 연구는 연구·개발 프로젝트의 평가를 위하여 연구·개발 프로젝트의 다-속성(Multi-attributes)을 고려하한 평가 모델의 연구이다. 이를 위하여 우선 평가구조를 구축하고 각 속성별 평가를 종합하기 위한 종합성과도(Total Preference Index)로 단일 측정치로 평가 할 수 있도록 종합하기 위한 적절한 효용함수를 도입하여 사용하였다. 이러한 평가 과정을 다-속성 의사결정 모델(Multi-attribute Utility Model)로 통합하였으며 연구·개발프로젝트의 특성을 고려하여 각 연구실의 책임자(Laboratory Directors)의 평가체계를 개발하여 본 평가모델에 포함하였다. 본 평가모델의 시험 적용을 위하여 특정 연구소에 시험적용하고 그 결과를 보였으며, 부분적으로 보완 연구될 경우 일반적인 프로젝트의 평가모델로 활용될 수 있으리라 생각된다.
본 논문에서는 차량 전장용 소프트웨어의 일부인 Basic Software(BSW) 모듈 설정이 AUTOSAR 표준을 따르는 지를 평가하는 도구를 설명한다. 평가 도구는 크게 평가 속성 추출 부분과 속성 평가 부분으로 구분된다. 평가 속성 추출 부분에서는 AUTOSAR에서 제공하는 BSW 메타 모델로부터 평가 속성을 정의하는 데 사용되는 정보를 자동으로 추출하며 속성 평가 부분에서는 앞에서 추출한 정보를 이용하여 평가 속성을 정의한 후 사용자가 설정한 BSW 사용자 설정 모델에 대해서 평가를 자동으로 수행한다. 한편 평가 속성을 정의하는 데 BSW 메타 모델과 BSW 사용자 설정 모델이 이용된다. 이 두 모델은 XML 구조를 따르고 있으며 이 두 모델로부터 필요한 정보를 얻기 위해서는 XML 탐색이 요구된다. 이를 위해서 우리는 XML 질의어 중 하나인 XPath를 사용하였으며 BSW 메타 모델과 BSW 사용자 설정 모델로부터 평가에 필요한 정보를 얻을 수 있었다. 또한 평가 속성을 정의하는 데에도 XPath 를 사용하였으며 XPath로 정의한 평가 속성을 이용하여 우리는 BSW 사용자 설정 모델을 평가할 수 있었다.
사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.
고충전 탄성중합체 균열선단에서의 파괴기구를 분석하였으며, 스트립 항복 모델 및 내재결함 모델이 적용되었다. 두 가지 모델의 수정으로부터 고충전 탄성중합체에 대한 파손평가선도의 작성방법이 연구되었다. 고체로켓연료로 사용되는 고충전 탄성중합체의 인장시험 및 파괴인성시험을 수행하였으며, 시험결과로부터 파손평가선도를 작성하였다. 내재결함 모델로부터 작성한 파손평가선도는 스트립 항복 모델로부터 작성한 파손평가선도와의 비교를 위해 정규화되었다. 두 가지 모델로부터 작성한 파손평가 선도를 비교한 결과, 내재결함모델을 이용한 파손평가선도가 스트립항복모델을 이용한 파손평가선도보다 더 보수적으로 파손을 평가하는 것으로 나타났다.
고충전 탄성중합체 균열선단에서의 파괴기구를 분석하였으며, 스트립 항복 모델 및 내재결함 모델이 적용되었다. 두 가지 모델의 수정으로부터 고충전 탄성중합체에 대한 파손평가선도의 작성방법이 연구되었다. 고체로켓연료로 사용되는 고충전 탄성중합체의 인장시험 및 파괴인성시험을 수행하였으며, 시험결과로부터 파손평가선도를 작성하였다. 내재결함 모델로부터 작성한 파손평가선도는 스트립 항복 모델로부터 작성한 파손평가선도와의 비교를 위해 정규화되었다. 두 가지 모델로부터 작성한 파손평가선도를 비교한 결과, 내재결함모델을 이용한 파손평가선도가 스트립항복모델을 이용한 파손평가선도보다 더 보수적으로 파손을 평가하는 것으로 나타났다.
본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.
기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.
오염물질에 대한 생태위해성평가(ecological risk assessment)를 위해서는 노출평가(exposure assessment)와 함께 생물영향에 대한 평가(effect assessment)를 수행해야 한다. 노출평가의 경우는 지화학적 과정에 대한 이해를 바탕으로 환경농도를 예측하기 위한 화학평형모델이나 다매체환경거동모델 등 다양한 평가 및 예측모델을 활용해 왔다. 이와 달리 생물영향평가는 실험실 조건에서 제한된 독성자료를 대상으로 외부노출농도에 기반한 농도-반응관계를 통계적 방법을 통해서 추정하는 '경험적 모델(empirical model)'에 주로 의존해 왔다. 최근에 와서 생체 내 잔류량을 기반으로 농도-시간-반응관계를 기술하고 예측하는 독성동태학 및 독성역학 모델(toxicokinetic-toxicodynamic model)과 같은 독성작용에 기반한 모델(processbased model)들이 개발되어 활용되고 있다. 본 논문에서는 여러 종류의 독성동태학 및 독성역학 모델을 소개하고, 이를 통계적 추론에 기반한 전통적인 독성학 모델과 비교하였다. 서로 다른 종류의 독성동태학 및 독성역학 모델로부터 도출된 노출농도-시간 -반응관계식을 비교하고, 동일 독성기작을 보이는 오염물질 그룹 내에서 미측정 오염물질의 독성을 예측할 수 있게 해주는 구조-활성관계(Quantitative Structure-Activity Relationship, QSAR) 모델을 여러 독성동태 및 독성역학모델로부터 유도하였다. 마지막으로 독성동태학 및 독성역학 파라미터를 추정하기 위한 실험계획을 제안하였고, 앞으로 독성동태학 및 독성역학 모델을 생태계 위해성평가에 활용하기 위해서 해결해야 될 연구과제를 검토하였다.
본 논문에서는 기존의 요약 태스크에서 주로 사용하는 인코더-디코더 모델과 디코더 기반의 언어 모델의 성능을 비교한다. 요약 태스크를 평가하는 주요한 평가 지표인 ROUGE 점수의 경우, 정답 요약문과 모델이 생성한 요약문 간의 겹치는 단어를 기준으로 평가한다. 따라서, 추상적인 요약문을 생성하는 언어 모델의 경우 인코더-디코더 모델에 비해 낮은 ROUGE 점수가 측정되는 경향이 있다. 또한, 최근 연구에서 정답 요약문 자체의 낮은 품질에 대한 문제가 되었고, 이는 곧 ROUGE 점수로 모델이 생성하는 요약문을 평가하는 것에 대한 신뢰도 저하로 이어진다. 따라서, 본 논문에서는 언어 모델의 요약 성능을 보다 다양한 관점에서 평가하여 언어 모델이 기존의 인코더-디코더 모델보다 좋은 요약문을 생성한다는 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.