• Title/Summary/Keyword: 모델링 능력 측정

Search Result 44, Processing Time 0.021 seconds

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Distribution Prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the Climate Change (기후변화에 따른 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 분포 예측에 대한 연구)

  • Lee, Su-Yeon;Choi, Seo-yun;Bae, Yang-Seop;Suh, Jae-Hwa;Jang, Hoan-Jin;Do, Min-Seock
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.480-489
    • /
    • 2021
  • Climate change poses great threats to wildlife populations by decreasing their number and destroying their habitats, jeopardizing biodiversity conservation. Asiatic salamander (Hynobiidae) species are particularly vulnerable to climate change due to their small home range and limited dispersal ability. Thus, this study used one salamander species, the Korean clawed salamander (Onychodactylus koreanus), as a model species and examined their habitat characteristics and current distribution in South Korea to predict its spatial distribution under climate change. As a result, we found that altitude was the most important environmental factor for their spatial distribution and that they showed a dense distribution in high-altitude forest regions such as Gangwon and Gyeongsanbuk provinces. The spatial distribution range and habitat characteristics predicted in the species distribution models were sufficiently in accordance with previous studies on the species. By modeling their distribution changes under two different climate change scenarios, we predicted that the distribution range of the Korean clawed salamander population would decrease by 62.96% under the RCP4.5 scenario and by 98.52% under the RCP8.5 scenario, indicating a sharp reduction due to climate change. The model's AUC value was the highest in the present (0.837), followed by RCP4.5 (0.832) and RCP8.5 (0.807). Our study provides a basic reference for implementing conservation plans for amphibians under climate change. Additional research using various analysis techniques reflecting habitat characteristics and minute habitat factors for the whole life cycle of Korean-tailed salamanders help identify major environmental factors that affect species reduction.