• 제목/요약/키워드: 모델링 기반 학습

검색결과 379건 처리시간 0.029초

Agent 기반 적응적 다중 학습자 모델링 (Adaptive Multilayered Student Modeling using Agent)

  • 이성곤;유영동
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.263-268
    • /
    • 1999
  • 지능형 교육 시스템에서 학습자 모델은 학습자의 반응을 토대로 교수모듈과 전문가 모듈을 연계하여 새로운 학습자 모델을 제시하는 역할을 수행하고 있으며, 이는 성공적인 지능형 교육 시스템의 구현에 있어서 핵심적인 부분이다. 따라서 많은 대학교 및 연구소에서 그동안 학습자 모형에 관한 많은 연구가 이루어져오고 있다. 그러나 대부분의 연구는 단일 학습자 모형을 기반으로 두고 있으며, 이러한 단일 학습자 모형을 이용한 시스템들은 학습자의 지식 또는 학습자의 성향을 정확히 파악하기는 어려움을 갖고 있을 뿐만 아니라 다른 모듈과의 인터페이스 부분에서 중복된 많은 정보를 가지고 있다. 따라서 본 논문에서는 학습자의 지식을 정확하게 진단하고 각 모듈간의 중복된 정보를 보완할 수 있는 다중 학습자 모형을 개발하여 구현하였다. 또한 이러한 다중 학습자 모형을 최적으로 수행할 수 있도록 하기위하여 agent기법을 적용하였다. Agent를 이용한 다중 학습자 모형을 적용하여 구현한 시스템은 첫째, 단계적인 접근 방법으로 보다 정확한 학습자의 지식 진단이 가능하다. 둘째, 학습과정중 학습자의 심리 상태 및 학습자의 선호도 등 파악이 용이하다. 셋째, 교수모듈과 전문가 모듈과의 연계에 있어서 정보의 중복됨의 최소화 등의 장점을 제공한다.

  • PDF

k-NN 기법을 이용한 학습자의 학습 행위 데이터의 이상치 분석 (Outlier Analysis of Learner's Learning Behaviors Data using k-NN Method)

  • 윤태복;정영모;이지형;차현진;박선희;김용세
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.524-529
    • /
    • 2007
  • 지능형 학습 시스템은 학습자의 학습 과정에서 수집된 데이터를 분석하여 학습자에게 맞는 전략을 세우고 적합한 서비스를 제공하는 시스템이다. 학습자에게 적합한 서비스를 위해서는 학습자 모델링 작업이 우선시 되며, 이 모델 생성을 위해서 학습자의 학습 과정에서 발생한 데이터를 수집하고 분석하게 된다. 하지만, 수집된 데이터가 학습자의 일관되지 못한 행위나 비예측 학습 성향을 포함하고 있다면, 생성된 모델을 신뢰하기 어렵다. 본 논문에서는 학습자에게서 수집된 데이터를 거리기반 이상치 선별 방법인 k-NN을 이용하여 이상치를 선별한다. 실험에서는 홈 인테리어 컨텐츠 기반에 학습자의 학습 행위에 대한 학습 성향을 진단하기 위한 DOLLS-HI를 이용하여, 수집된 학습자의 데이터에서 이상치를 분류하고 학습 성향 진단을 위한 모델을 생성하였다. 생성된 모델은 이상치 분류전과 비교하여 신뢰가 향상된 것을 확인하였다.

  • PDF

강화학습 기반 사용자 프로파일 학습 (Learning User Profile with Reinforcement Learning)

  • 김영란;한현구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.325-327
    • /
    • 2002
  • 정보검색 태스크에서 사용자 모델링의 목적은 관련정보 검색을 용이하게 해주기 위하여 사용자의 관심도 또는 필요정보의 모델을 학습하는 것으로 시간적인 속성(temporal characteristics)을 가지며 관심 이동을 적절하게 반영하여야 한다. 강화학습은 정답이 주어지지 않고 사용자의 평가만이 수치적으로 주어지는 환경에서 평가를 최대화 한다는 목표를 가지므로 사용자 프로파일 학습에 적용할 수 있다. 본 논문에서는 사용자가 문서에 대해 행하는 일련의 행위를 평가값으로 하여 사용자가 선호하는 용어를 추출한 후, 사용자 프로파일을 강화학습 알고리즘으로 학습하는 방법을 제안한다. 사용자의 선호도에 적응하는 능력을 유지하기 위하여 지역 최대값들을 피할 수 있고, 가장 좋은 장기간 최적정책에 수렴하는 R-Learning을 적용한다. R-learning은 할인된 보상값의 최적화보다 평균 보상값을 최적화하기 때문에 장기적인 사용자 모델링에 적합하다는 것을 제시한다.

  • PDF

3차원 메쉬의 효율적인 학습을 위한 삼각형의 면적과 변화를 이용한 로컬 특징맵 (Local Feature Map Using Triangle Area and Variation for Efficient Learning of 3D Mesh)

  • 나홍은;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.573-576
    • /
    • 2022
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolutional Neural Network, CNN)의 정확도를 개선시킬 수 있는 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 삼각형의 넓이와 그 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 오디오 파일과 이미지이었다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 학습은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장으로 인해 3차원 모델링 시장이 증가가 하면서 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습 표현하는 방식으로 적용하는 것은 쉽지 않다. 그렇기 때문에 본 논문에서는 산업 현장에서 사용되는 데이터인 삼각형 메쉬 구조를 바탕으로 기존 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처 (CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh)

  • 나홍은;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석 (Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model)

  • 이효승;심철준;원일용;이창훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF

빅 데이터 처리를 위한 적응적 사용자 및 토픽 모델링 기반 자동 TV 프로그램 추천시스템 (Adaptive User and Topic Modeling based Automatic TV Recommender System for Big Data Processing)

  • 김은희;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.195-198
    • /
    • 2015
  • 최근 TV 서비스의 가입자 및 TV 프로그램 콘텐츠의 급격한 증가에 따라 빅데이터 처리에 적합한 추천 시스템의 필요성이 증가하고 있다. 본 논문은 사용자들의 간접 평가 데이터 기반의 추천 시스템 디자인 시, 누적된 사용자의 과거 이용내역 데이터를 저장하지 않고 새로 생성된 사용자 이용내역 데이터를 학습하는 효율적인 알고리즘이면서, 시간 흐름에 따라 사용자들의 선호도 변화 및 TV 프로그램 스케줄 변화의 추적이 가능한 토픽 모델링 기반의 알고리즘을 제안한다. 빅데이터 처리를 위해서는 분산처리 형태의 알고리즘을 피할 수 없는데, 기존의 연구들 중 토픽 모델링 기반의 추론 알고리즘의 병렬분산처리 과정 중에 핵심이 되는 부분은 많은 데이터를 여러 대의 기계에 나누어 병렬분산 학습하면서 전역변수 데이터를 동기화하는 부분이다. 그런데, 이러한 전역데이터 동기화 기술에 있어, 여러 대의 컴퓨터를 병렬분산처리하기위한 하둡 기반의 시스템 및 서버-클라이언트간의 중재, 고장 감내 시스템 등을 모두 고려한 알고리즘들이 제안되어 왔으나, 네트워크 대역폭 한계로 인해 데이터 증가에 따른 동기화 시간 지연은 피할 수 없는 부분이다. 이에, 본 논문에서는 빅데이터 처리를 위해 사용자들을 클러스터링하고, 클러스터별 제안 알고리즘으로 전역데이터 동기화를 수행한 것과 지역 데이터를 활용하여 추론 연산한 결과, 클러스터별 지역별 TV프로그램 시청 토큰 별 은닉토픽 할당 테이블을 유지할 때 추천 성능이 더욱 향상되어 나오는 결과를 확인하여, 제안된 구조의 추천 시스템 디자인의 효율성과 합리성을 확인할 수 있었다.

  • PDF

머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안 (Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares)

  • 이계웅;오승택;윤영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.427-432
    • /
    • 2019
  • 모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 다양한 특징점 추출 및 기계학습을 통해 이를 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 사용하여 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 추가적으로 오탐률 및 미탐률을 개선하기 위해 권한 정보를 모두 제외하여 특징점을 재구성하고 위와 같은 환경으로 모델링하였다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97.8%로 정확도가 개선되었고 오탐률은 1.9%로 성능이 개선된 것이 확인되었다.

학습분석을 위한 데이터 모델링 연구 (A Study on Data Modeling for Learning Analytics)

  • 김경록
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.348-349
    • /
    • 2016
  • 교수자와 학습자 활동에 대한 정보를 피드백하여 사용자 스스로 동기부여와 참여를 증대시키기 위해 학습분석이 활용되고 있다. 이는 교수-학습 지원 시스템(LMS, LCSM 등)에서 교수자와 학습자 상호작용에서 발생한 데이터를 기반으로 한다. 이러한 데이터를 보다 유용하게 활용하기 위해서는 데이터 모델이 필요하다. 이에 본 연구에서는 사용자 중심의 교수-학습 활동 데이터를 표현하기 위한 데이터 모델을 제안한다. 이는 사용자와 교수-학습 활동을 결합하여 표현한 것이다.

역량기반 학습성과 평가 시스템 구현을 위한 데이터 모델링 및 알고리즘 설계 (Data modeling and algorithms design for implementing Competency-based Learning Outcomes Assessment System)

  • 정현숙;김정민
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.335-344
    • /
    • 2021
  • 본 논문의 목적은 교과기반 학습성취평가 시스템 구현을 위한 교과 데이터 모델 및 학습 성취도 산출 알고리즘 개발이다. 현재 대학 교육의 방향인 역량기반 교육을 위해서는 교과기반 학습성취 평가가 필수적이지만 기존 연구들은 교육학적 관점으로서 컴퓨터 시스템 관점의 해결책이 매우 부족하다. 본 논문에서는 코스맵 데이터 구조 분석을 통해 계층 구조의 학습성과 모델, 학습모듈 및 학습활동 모델, 학습성과와 학습활동 연계 매트릭스 모델 및 자동화된 성취도 산출 및 성취수준 평가를 위한 성취도 계산 알고리즘을 제안한다. 이를 통해 교과기반 학습성취 평가 시스템을 개발할 수 있으며 시스템 활용을 통해 학습자의 역량 성취를 효과적으로 평가할 수 있다. 제안된 모델과 알고리즘의 평가를 위해 실제 운영중인 자바프로그래밍 교과목에 적용하였으며 이를 통해 교과기반 학습성과 성취평가 시스템 구현의 핵심요소로 활용할 수 있음을 확인하였다. 향후 연구는 학습성과 성취도 산출을 기반으로 적응형 학습 피드백과 개인화된 학습 추천 알고리즘 개발 및 시스템 구현이다.