• Title/Summary/Keyword: 모노파일 기초설치 시스템

Search Result 3, Processing Time 0.02 seconds

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

Effective Range Evaluation of Wireless Monitoring System for Monopile (모노파일용 원거리 무선 모니터링 시스템의 유효거리 평가)

  • Park, Kiwon;Lee, Jong-Sub;Choi, Changho;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.91-100
    • /
    • 2012
  • Wireless monitoring system for the structural health evaluation has a limit to the reliability of measured response. The objective of this study is to evaluate an effective measurement range of the wireless monitoring system on the analyzed data. For the wireless monitoring system, Bluetooth and Wi-Fi are applied to datalogger-receiver and receiver-personal computer, respectively. For the model of the monopile structure response, a laboratory-scale monopile is manufactured with Mono Cast Nylon and a lateral loading is applied by hammer impacting. Strain gauges attached on the model monopile are connected with the datalogger. The distances of datalogger-receiver and receiver-personal computer are changed for the evaluation of the measurement range. Experimental results show that the receiving rates of the response remain almost constant within limited distance, while the receiving rates dramatically decrease out of effective range. In addition, the receiving rates affect on the measured natural frequencies of the model monopile. This study suggests that the effective range evaluation of the wireless monitoring system may be used for the determination of a monitoring distance to the monopile installed in the offshore wind farm.

Numerical Analysis of Offshore Wind Turbine Foundation Considering Properties of Soft layer in Jeju (제주 연약지층 특성을 고려한 해상풍력기초의 수치해석적 연구)

  • Yang, Ki-Ho;Seo, Sang-Duk;Cho, Yee-Sun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this paper, the settlement and stress distribution is predicted by numerical analysis when the mono-pile base are constructed on various soft layer between stratified structure. To determine the settlement of the pile foundation supported on stratified rock layer, the geological investigation at the 3 regiions and the results of laboratory experiments of the stratified rock layer is required.