Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.164-166
/
2000
지금까지 대부분의 정보검색 시스템은 명사만을 색인어로 추출하여 사용하였다. 명사는 문서를 대표할 수 있는 어휘 요소이다. 그러나 명사 색인어만 가지고는 문서의 주제를 정확하게 나타낼 수 없다. 본 논문은 명사 색인어와 함께 용언도 색인어로 추출하여 사용하는 한국어 정보 검색시스템을 제시한다. 또한, 용역 색인어와 명사 색인어의 상대적 가중치를 검색에 이용하여 사용자의 질의에 적합한 문서를 검색할 수 있도록 한다. 이러한 과정에서 발견된 문제점은 향후 연구 과제로 계속 향상시켜나갈 것이다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.89-91
/
1999
이 논문은 한국어 정보검색 시스템 "미리내"의 내부 모듈인 색인어 추출 시스템의 성능 평가에 관한 내용이다. 성능 평가를 위해서 99년 ETRI에서 실시한 "형태소분석기 및 태거 비교 분석대회(MATEC99)"의 시험어절을 사용하였다. 정보검색 시스템 "미리내"는 한국어 정보검색을 위해 부산대학교에서 개발한 시스템이다. 한국어 형태소분석 및 태거 대회(MATEC99)를 위해 미리내 검색엔진의 색인어 추출 모듈을 일부 수정하여 명사를 추출하였다. 명사추출기이든 형태소분석기이든 응용프로그램의 특성에 맞춰져서 동작한다. 정보검색의 하위 모듈인 색인어 추출 시스템은 정보검색을 위해 변형된 결과를 출력하므로 성능 비교를 위해 일부 모듈의 수정이 불가피하였다. ETRI에서 실시한 MATEC99는 지금까지 객관적인 평가 기준이 없었던 한국어 형태소분석기, 태거, 명사추출기의 표준화에 중요한 역할을 하였다.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.3-7
/
1995
한국어에서의 명사구 색인을 위한 기존의 방법들은 주로 간단한 규칙을 이용하여 왔고 그 결과 문장에 존재하는 모든 명사구를 추출하지 못했다. 이를 해결하기 위하여 본 논문에서는 개념 기반 명사구 색인 방법을 제안한다. 하나의 문장은 하나 이상의 개념으로 이루어져 있으므로, 명사구 추출은 개념을 고려하여 이루어져야 바람직하다 문장은 구문적으로 하나 이상의 내포문으로 이루어져 있다. 일반적으로 내포문 단위 내의 용어들이 나타내는 각각의 개념들은 서로 높은 연관성을 가진다. 그러므로 문장이 가지는 개념의 상이성을 내포문의 개념 상이성으로 축소할 수 있다. 문장을 내포문 단위로 분할하기 위하여 의존 문법을 기반한 구문분석과 공기정보를 이용한다. 특히 공기정보는 원거리 의존관계(long distance dependency)를 결정하여 한 내포문에 속함을 밝혀내는 데 도움을 준다. 이러한 내포문 내의 의존관계를 이용하여 명사구를 추출한다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.68-72
/
1996
본 논문에서는 고유 명사 출현 패턴 정보와 부가 정보를 이용한 미등록 고유 명사의 색인 방법을 제안한다. 정보 검색 시스템에서 고유 명사의 처리는 정확하고 의미 있는 색인을 위해 매우 중요하다. 본 논문은 형태소 분석 결과에 고유 명사 출현 패턴과 패턴 부가 정보를 사용하여 인명, 기관명, 회사명 등의 고유 명사 추출의 정확도를 높이는 방법을 제시한다. 총 827개의 인명과 기관 및 회사명을 포함하고 있는 조선일보 경제면 기사 100개 7416 어절에 대하여 본 시스템으로 실험한 결과, 인명의 경우 89%의 정확률을 보였다. 본 논문에서 제시한 출현 패턴과 고유 명사의 부가 정보를 적용했을 때 단순한 형태소 분석 결과에 비하여 고유 명사 추출 오류가 크게 개선되었다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.56-59
/
2000
한국어에서 복합명사는 명사간 결합이 자유롭고, 단위명사로 띄어쓰는 것을 원칙으로 하나 붙여써도 무방하다. 따라서, 정보검색분야, 기계번역분야에서 복합명사의 정확한 분해는 시스템의 성능에 많은 영향을 미치게 된다. 본 논문에서는 ETRI의 태깅된 코퍼스로부터 추출한 복합명사를 역방향 분해 알고리즘을 이용하여 단위명사로 분해한다. 분해되지 않은 3119개의 복합명사에 대해 실험한 결과 약 96.6%의 정확도를 얻었다. 또한, 미등록이나 접사에 대한 처리에도 비교적 정확한 결과를 얻을 수 있었다.
Proceedings of the Korean Society for Information Management Conference
/
1995.08a
/
pp.11-14
/
1995
기존의 한글 자동 색인 방법들은 어절 단위 색인법과 형태소 단위 색인법으로 분류될 수 있다. 전자는 문서내의 어절에서 색인어의 부분으로서 가치가 없는 음절들을 제거함으로써 색인어를 추출하는 방법으로, 문서에 복합 명사들이 많이 포함되어 있을 경우 검색효과가 저하되는 문제점을 지니고 있다. 후자는 형태소 해석이나 구문 해석을 이용하여 중요한 의미를 갖는 명사나 명사구를 추출하는 방법으로, 단일 명사를 추출함으로써 복합 명사의 띄어 쓰기 문제를 극복할 수 있다. 그러나, 색인 과정에서 요구되는 많은 언어 정보를 개발하고 유지 보수해야 하는 부담을 지니고 있다. 본 논문에서는 기존의 색인 방법들의 문제점들을 완화할 수 있는 새로운 색인 방법을 제안한다. 그리고 실험을 통하여 제안하는 방법의 성능을 평가한다.
Kim, Tae-Hyun;Lim, Soo-Jong;Yun, Bo-Hyun;Park, Sang-Gyu
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.325-331
/
2002
정보추출 시스템의 목적은 관심의 대상이 되는 특정 정보를 선택적으로 찾아내 제시하는데 있다. 따라서 도메인 정보에 의존적인 방법으로 정보추출이 이루어질 수밖에 없고, 이에 따른 도메인 정보 구축의 부담이 컸다. 이러한 부담을 줄이기 위해 본 연구에서는 특정 주제영역과 관련한 문서로부터 자동으로 이벤트 문장을 추출하는 시스템을 제안한다. 이벤트 문장이란, 특정도메인에서 다루어지는 이벤트의 구체적인 내용을 포함하고 있는 문장이다. 이러한 문장을 추출함으로써 기본적인 수준의 정보추출 요구를 만족시킬 수 있을 뿐만 아니라, 주출된 이벤트 문장을 도메인 정보 구축에 활용할 수 있을 것이다. 본 연구에서는 동사, 명사, 명사구, 및 3W 자질을 이용하여 문장추출의 성능을 최대화하기 위한 방안을 제안하고, 세 개의 평가 도메인을 대상으로 실험을 수행하였다. 실험 결과, when 및 where 자질과 동사, 명사. 명사구의 가중치를 이용하여 문장 가중치를 계산함으로써 최적의 이벤트 문장추출 성능을 얻을 수 있음을 알 수 있었다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.173-178
/
1999
본 논문의 명사추출기는 정보검색시스템을 위한 색인어 추출기로 좌우접속정보를 이용한 형태소해석을 통하여 얻어진 형태소들 중에서 명사를 추출한다. 본 형태소해석기는 형태소해석을 위한 언어지식과 어절 분리 엔진을 분리하여 수정과 확장이 용이하게 하였다. 사용한 언어지식은 좌우접속정보로서 한 어절을 이루는 형태소들의 품사간의 접속여부를 행렬로 표현한 것이다. 어절 분리 엔진은 사전을 참조하여 한 어절에서 최장일치법에 의해 형태소를 분리하고 좌우접속정보를 참조하여 형태소 분리가 올바른지를 판단한다. 형태소들의 품사분류는 표준 태그셋을 기반으로 음절 정보를 추가하여 확장하였다. 형태소를 해석한 결과 미등록어가 발생하였을 때 미등록어에서 명사를 추정하는 모듈이 없기 때문에 재현율은 좋지 않았다.
Journal of the Korea Society of Computer and Information
/
v.26
no.8
/
pp.55-63
/
2021
Since social big data often includes new words or proper nouns, statistical morphological analysis methods have been widely used to process them properly which are based on the frequency of occurrence of each word. However, these methods do not properly recognize compound nouns, and thus have a problem in that the accuracy of keyword extraction is lowered. This paper presents a method to extract compound nouns in keyword analysis of social big data. The proposed method creates a candidate group of compound nouns by combining the words obtained through the morphological analysis step, and extracts compound nouns by examining their frequency of appearance in a given review. Two algorithms have been proposed according to the method of constructing the candidate group, and the performance of each algorithm is expressed and compared with formulas. The comparison result is verified through experiments on real data collected online, where the results also show that the proposed method is suitable for real-time processing.
We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.