• Title/Summary/Keyword: 명사변화

Search Result 44, Processing Time 0.023 seconds

Urban Landscape Image Study by Text Mining and Factor Analysis - Focused on Lotte World Tower - (텍스트 마이닝과 인자분석에 의한 도시경관이미지 연구 - 롯데월드타워를 대상으로 -)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.104-117
    • /
    • 2017
  • This study compares the results of landscape image analysis using text mining techniques and factor analysis for Lotte World Tower, which is the first atypical skyscraper building in Korea, and identifies landscape images of the site to determine possibilities of use. Lotte World Tower's landscape image has been extracted from text mining analysis focusing on adjectives such as 'new', 'transformational', 'unusual', 'novelty', 'impressive', and 'unique', and phrases such as in the process of change, people's active elements(caliber, outing, project, night view), media(newspaper, blog), and climate(weather, season). As a result of the factor analysis, factors affecting the landscape image of Lotte World Tower were symbolic, aesthetic, and formative. Identification, which is a morphological feature, has characteristics of scale and visibility but it is not statistically significant in preference. Rather, the psychological factors such as the symbolism with characteristics such as poison and specialty, harmony with the characteristics of the surrounding environment, and beautiful aesthetic characteristics were an influence on the landscape image. The common results of the two research methods show that psychological characteristics such as factors that can represent and represent the city affect the landscape image more greatly than the morphological and physical characteristics such as location and location of the building. In addition, the text mining technique can identify nouns and adjectives corresponding to the images that people see and feel, and confirms the relationship between the derived keywords, so that it can focus the process of forming the landscape image and further the image of the city. It would appear to be a suitable method to complement the limitation of landscape research. This study is meaningful in that it confirms the possibility that big data can be utilized in landscape analysis, which is one research field of landscape architecture, and is significant for understanding the information of a big data base and contribute to enlarging the landscape research area.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

How has 'Hakmun'(學問, learning) become converted into a modern concept? focused on 'gyeogchi'(格致) and 'gungni'(窮理) (학문(學問) 개념의 근대적 변환 - '격치(格致)', '궁리(窮理)' 개념을 중심으로 -)

  • Lee, Haeng-hoon
    • (The)Study of the Eastern Classic
    • /
    • no.37
    • /
    • pp.377-410
    • /
    • 2009
  • In the East Asian Confucianism society, Hakmun was aimed to bring human beings and nature into harmony, and to explore a unity between knowledge and conducts. For example, Neo-Confucianism aspired they could explain the human existence and society through a single concept of Iki(理氣, the basic principles and the atmospheric force of nature). In this philosophy, humanics and natural sciences had not been differentiated at all. The East-West cultural interchanges at the beginning of modernity caused a crack in the traditional academic concepts. Through the Hundred Days of Reform(變法自疆運動, a movement of Strenuous Efforts through Reforming the Law), the Western Affairs Movement(洋務運動) in China, Meiji Restoration(明治維新) in Japan, or Innovation Movements(開化運動) and the Patriotic Enlightenment Movement(愛國啓蒙運動) in Korea, the traditional meanings of Hakmun was degraded while it became a target of the criticism of the enlightenment movements. Accordingly, East Asians' perception of Hakmun rapidly began to change. Although there had been the Silhak(實學, practical science) movement in Korea, which tried to differentiate its conceptualization of Hakmun from that of Neo-Confucianism during the 18th and 19th century, the fundamental shift in meaning occurred with the influx of the modern Western culture. This change converted the ultimate objective of Hakmun as well as its methods and substances. The separation of humanics and natural sciences, rise in dignity of the technological sciences, and subdivision of learning into disciplines and their specialization were accelerated during the Korean enlightenment period. The inflow of the modern western science, humanized thought, and empiricism functioned as mediators in these phase and they caused an irreversible crack in the traditional academic thoughts. Confronting the western mode of knowledge, however, the East Asian intellectuals had to explain their new learning by using traditional terms and concepts; modification was unavoidable when they tried to explain the newly imported knowledge and concepts. This presentation focuses on the traditional concepts of 'gyeogchi'(格致, extending knowledge by investigating things) and 'gungni'(窮理, investigation of principles), pervasively used in philosophy, physics and many other fields of study. These concepts will mark the key point with which to trace changes of knowledge and to understand the way how the concept of Hakmun was converted into a modern one.

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.