• Title/Summary/Keyword: 면적 변화형

Search Result 484, Processing Time 0.027 seconds

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Redetermining the curve number of Korean forest according to hydrologic condition class (수문학적 조건 등급에 따른 우리나라 산림의 유출곡선지수 재산정)

  • Park, Dong-Hyeok;Yu, Ji Soo;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.653-660
    • /
    • 2017
  • The SCS-CN (Soil Conservation Service-Curve Number) method has been practically applied for estimating the effective precipitation. The CN is used to be determined according to the land use condition based on the US standard. However, there are two distinctive differences between U.S. and Korean land use conditions: mountainous (forest) and rice paddy area that cover more than 70% of the Korean territory. The previous work proposed to use 79 for rice paddy area, regardless of the soil type. Because US SCS's goal was originally to increase crops, the SCS classification standard provides only for woods and there are no criteria to distinguish the wood and forest. To determine the CN for forest, alternatively the U.S. Forest Service criteria have been employed in practice considering hydrologic condition class. In this study, we investigated the change of the forest CN using the observed rainfall - runoff data within the target area. The results indicated that the CN for forest was suitable for HC=1, and the corresponding CNs were redetermined between 54 and 55.

Ubiquitous sensor network based plant factory LED lighting system development (유비쿼터스 센서 네트워크 기반의 식물공장 LED 조명 시스템 개발)

  • Yang, Heekwon;Shin, Minseock;Lee, Chankil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.845-848
    • /
    • 2013
  • Due to intense climate changes and extreme weather conditions a noticeable decrease has been observed in the growth of certain plants. The indoor plant factories would have certain benefits including increase in crop yield, reduction in distribution cost, and maintains the healthy freshness level of the agricultural product. Recently, an artificial light source with optimum wavelength is spot lighted to fulfill the need of light for the indoor plant factories. The energy efficient light emitting diodes (LED) provide the essential light energy for the proper growth of indoor cultivated plants. This work focuses to utilize ubiquitous sensors network(USN) in providing suitable environment for the proper growth of agricultural product inside the indoor plant factory. The proposed system makes use of sensors and actuators, communicating each other through WPAN, ZigBee network. The proposed system obscured the traditional indoor plant factories with easy installation and wireless connectivity of the sensors and actuators along with eliminating the web of wires reducing the initial installation and maintenance cost.

  • PDF

Vegetation Distribution and Phytosociological Character of Useupje (Backswamp) in the Youngsan River Basin (영산강 수계의 배후습지인 우습제에 서식하는 식생분포와 특성)

  • Jeong, Hyun-Gi;Lim, Jeong-Cheol;Choi, Byoung-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.157-168
    • /
    • 2017
  • Backswamp is the section of a floodplain where deposits of fine silts and clays settle after a flood. In general, the wetland is composed of diverse ecosystems, and is characterized by ecotone. The purpose of this study was to analyze vegetation naturalness and to assess vegetation value by syntaxonomy and synecology of Useupje backswamp at Yeongsan river. As a result, the vegetation was divided into four physyiognomy types and 14 vegetation units depending on the species composition and habitats. The vegetation units confirmed in the study were as follow: Spirodela polyrhiza community as floating plant; Trapa bispinosa var. inuma community and Trapa bispinosa var. inumai-Nelumbo nucifera community as floating-leaved plant; Paspalum distichum community, Persicaria thunbergii community and Phalaridetum arundinaceae as lentic vegetation in the eulittoral zone; Scirpo fluviarilis-Zizanietum latifoliae and Typha angustata community in the emerged zone; Scirpetum tabernaemontani and Phragmitetum australis in the littoral zone; Carex dimorpholepis-Salix subfragilis community ecotone region of upland. According to the study, the vegetation distribution was highly affected by water level and artificial interference. Moreover, the development of vegetation units showed a significant relationship between species composition and habitats. Although vegetation value of Useupje resulted by vegetation naturalness was identified as the grade [III], the ecological value is expected to upward evaluation because of unique vegetation and geographical location.

The study of evaluating surface characteristics and effect of thermal annealing process for AlN single crystal grown by PVT method (PVT법으로 성장된 AlN 단결정의 표면 특성 평가 및 고온 어닐링 공정의 효과에 대한 연구)

  • Kang, Hyo Sang;Kang, Suk Hyun;Park, Cheol Woo;Park, Jae Hwa;Kim, Hyun Mi;Lee, Jung Hun;Lee, Hee Ae;Lee, Joo Hyung;Kang, Seung Min;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.143-147
    • /
    • 2017
  • To evaluate surface characteristics and improve crystalline quality of AlN single crystal grown by physical vapor transport (PVT) method, wet chemical etching process using $KOH/H_2O_2$ mixture in a low temperature condition and thermal annealing process was proceeded respectively. Conventional etching process using strong base etchant at a high temperature (above $300^{\circ}C$) had formed over etching phenomenon according to crystalline quality of materials. When it occurred to over etching phenomenon, it had a low reliability of dislocation density because it cannot show correct number of etch pits per estimated area. Therefore, it was proceeded to etching process in a low temperature (below $100^{\circ}C$) using $H_2O_2$ as an oxidizer in KOH aqueous solution and to be determined optimum etching condition and dislocation density via scanning electron microscope (SEM). For improving crystalline quality of AlN single crystal, thermal annealing process was proceeded. When compared with specimens as-prepared and as-annealed, full width at half maximum (FWHM) of the specimen as-annealed was decreased exponentially, and we analyzed the mechanism of this process via double crystal X-ray diffraction (DC-XRD).

Computational study of orientation effects on thermal performance of natural convection cooled lightweight high performance hollow hybrid fin heat sinks (자연대류 냉각되는 경량고성능 할로우 하이브리드 휜 히트싱크의 열성능에 대한 방향 영향의 전산연구)

  • Effendi, Nico Setiawan;Kim, Kyoung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.786-790
    • /
    • 2016
  • This paper discusses numerically explored orientation effects on the thermal performance of hollow hybrid fin heat sinks (HHFHSs) under natural convection. A HHFHS consists of an array of hollow pin fins concatenated with plate fins and having perforations near the fin bases. Orientation effects on the footprint-based and mass-based thermal performance of the HHFHS were numerically studied for orientation angles ranging from $0^{\circ}$ to $180^{\circ}$. The performance of the HHFHS was compared with that of a pin fin heat sink (PFHS) having similar physical parameters. The results show that the thermal resistance of the HHFHS did not vary considerably from $0^{\circ}$ to $45^{\circ}$. The thermal resistance increased from $45^{\circ}$ to $90^{\circ}$, reached its maximum at $90^{\circ}$, and decreased consistently from $90^{\circ}$ to $180^{\circ}$. Dissimilar behaviors of the thermal resistance of the HHFHS vs. the PFHS resulted mainly from the effect of heat pumping induced by the internal flows of the hollow fins. Despite various orientations, the mass-based thermal resistance of the HHFHS was found to be nearly 30% smaller than that of the PFHS. This result shows the feasibility of the HHFHS for the lightweight thermal management of electronics under natural convection.

A Study on Design of Smart Home Service Robot McBot II (스마트 홈 서비스 로봇 맥봇II의 설계에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1824-1832
    • /
    • 2011
  • In this paper, a smart home service robot McBot II is newly developed in much more practical and intelligent system than McBot I which we had developed a few years ago. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot McBot II to completely overcome this problem on real environments. The mechanical design and the basic control of McBot II, which performs mess-cleanup function etc. in house, is actually focused in this paper. McBot II is mechanically modeled in the same method that the human works in door by using the waist and the hands. The big-ranged vertical lift and the shoulder joints to be able to forward move are mechanically designed for the operating function as the human's waist when the robot works. The mobility of McBot II is designed in the holonomic mobile robot for the collision avoidance of obstacle and the high speed navigation on the small area in door. Finally, good performance of McBot II, which has been optimally desinged, is confirmed through the experimental results for the control of the robotic body, mobility, arms and hands in this paper.

Change of the Volatile Organic Compounds from Irradiated Dried-Red Pepper (방사선 조사된 건고추의 휘발성 유기화합물 변화)

  • Shim Sung-Lye;Seo Hye-Young;Kim Jun-Hyeong;No Ki-Mi;Yang Su-Hyeong;Gyawali Rajendra;Park Eun-Ryong;Lee Kang-Bong;Lee Yun-Dong;Myoung Dong-Ho;Kim Kyong-Su
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Compare with volatile organic compounds from unirradiated and irradiated dried-red pepper that is representative spice of korea. Volatile compounds from unirradiated and irradiated dried-red pepper were extracted using simultaneous distillation-extraction(SDE) apparatus and analyzed by Gas chromatography/mass spectrometer (GC/MS). A total of 61 and 62 compounds were identified from unirradiated and irradiated dried red pepper at dose of 10 kGy. These compounds included alcohols, aldehydes, furans, hydrocarbons, ketones, N-containing compounds, terpenes and micellaneous compounds. Furfural, benzaldehyde, linalool, nerolidol, ${\alpha}$-curcumene, ${\alpha}$-zingibirene were detected as the major volatile compounds from dried-red pepper. Specially, 1,3-bis[1,1-dimethylethyl]-benzene was confirmed as a marker of irradiated dried-red pepper because is not detected in unirraiatied dried-red pepper.

A Study on Colors through Regeneration Design for Abandoned Factory Buildings - The Color of Buildings in the Port Area of Bongnae-dong, Yeongdo, Busan as an Example - (폐공장 건물 재생디자인에 대한 색채 관한 연구 - 부산 영도 봉래동 항만지역 건축물 색채를 중심으로 -)

  • Li, XinTong;Zhang, Ning;Cho, Joung-Hyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.177-188
    • /
    • 2021
  • In South Korea, with the advancement of the 'Port' project, the regeneration industry adapted to the modern economic development has been promoted, leading to construction around the port was also redefined. Therefore, through regeneration, the problem of image construction of buildings around the port has been re-examined, in which color is an important content of image construction. In this study, the exterior walls of abandoned factory buildings in the port area of Bongnaedong, Pusan were selected as the color research object and evaluated according to the characteristics of the regenerated factory buildings combined with the building color function. Technically, KSCP color analysis system is used for color analysis. In this way, the color plan for the exterior walls of the factory buildings is proposed to visually enhance the image of abandoned factory buildings and attract more attention, thus driving the regional economic development. The results of this study show that in order to adapt to the regional, industrial and commercial characteristics of the regenerated port space, the color hue, lightness, chroma and use area of the building can be changed to enhance the aesthetic value and enhance the inductivity and security.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.