• Title/Summary/Keyword: 면외 진동인텐시티

Search Result 7, Processing Time 0.03 seconds

Measurements of the Out-of-Plane Vibration Intensity of Coupled Plate (연성평판의 면외 진동인텐시티 측정)

  • 전진숙;길현권;이병철;김창열;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.831-835
    • /
    • 2003
  • The objective of this paper is to suggest an experimental technique to measure the out-of-plane vibration intensity of a coupled plate. In order to measure the out-of-plane vibration intensity of the plate, the frequency response technique has been implemented. In this technique, the 2-D intensity vector at a measurement point has been estimate from the frequency response functions measured at 4 points in the neighborhood of the measurement point. The experimental result has been compared with a theoretical result. It showed that the experimental technique can be effectively used to measure the out-of-plane vibration intensity of plates.

  • PDF

Structural Intensity Analysis of Stiffened Plate Using Assumed Mode Method (Assumed Mode Method를 이용한 보강판의 진동인텐시티 해석)

  • Dae-Seung Cho;Sa-Soo Kim;Sang-Min Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.76-86
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on assumed mode method. To evaluate the convergence of structural intensity according to the number of superposition modes, the power obtained by structural intensity integration over the closed curve containing the excitation source is compared with the power injected into plates. The erect of power reduction due to the material internal loss is evaluated using the intensity around a localized damping point, In addition, the dominant component among internal forces in the power transfer by the bending vibration of plates and the change of power flow due to stiffener are also investigated.

  • PDF

Measurements of Vibration Intensity of a Coupled Beam (연성보의 진동 인텐시티 측정)

  • Lee, H.H.;Kim, C.R.;Kil, H.G.;Lee, Y.H.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.728-731
    • /
    • 2005
  • The objective of this paper is to perform measurements of vibration intensity of a coupled beam. The propagation of flexural waves generates the out of plane vibration of the coupled beam. The longitudinal waves are generated due to the mode conversion at the structural joint of the coupled beam. The propagation of longitudinal waves generates the in plane vibration of the coupled beam. In order to identify the direction of vibrational power on the coupled beam, the in plane vibration intensity as well as the out of plane vibration intensity needs to be measured. The cross spectral method has been implemented to measure the in-plane vibration intensity as well as out of plane vibration intensity. The results shelved that the experimental method can be effectively used to measure the in-plane vibration intensity as well as the out of plane vibration intensity of coupled beams.

  • PDF

Out-of-plane Structural Intensity Analysis of Rectangular Thick Plate (직사각형 후판의 면외 진동인텐시티 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • A numerical method is presented for an out-of-plane structural intensity analysis of rectangular thick plates with arbitrary elastic edge constraints. The method adapts an assumed mode method based on Timoshenko beam functions to obtain the velocities and internal forces needed for a structural intensity analysis. To verify the presented method, the structural intensity of a square thick plate under harmonic force excitation, for which four edges are simply supported, is analyzed, and the result is compared with existing solutions using the assumed mode method based on trigonometric functions. In addition, numerical analyses are carried out for a rectangular-shaped thick plate under harmonic force excitations, of which three edges are simply supported and one edge utilizes an arbitrary elastic edge constraint. These numerical examples show the good accuracy and applicability of the presented method for rectangular thick plates with arbitrary edge constraints.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF