• Title/Summary/Keyword: 면외응력

Search Result 70, Processing Time 0.022 seconds

A Thermal Stress Analysis of Beams with Out-of-Plane Warping (면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper, a methodology, which is able to predict the thermal stresses accurately yet efficiently, is presented for beam structures via Saint-Venant's principle. In general, higher-order beam theories have been known to be effective for the prediction of thermal stresses. In contrast to this, we propose the method to predict the thermal stresses of beam structures by post-processing the classical beam theory via Saint-Venant's principle. The approach includes an out-of-plane warping displacement to account for the through-the-thickness thermal deformation. With this, one can accurately recover the thermal stresses as compared to the elasticity solutions. In fact, they are identical for the beams made of isotropic materials. The effect of out-of-plane warping is also investigated, it turns out that the effect is negligible in mechanical stress analysis but not in thermal stress analysis.

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - I : the Reason Why Crack Occurs (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - I : 균열 발생원인)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.299-305
    • /
    • 2009
  • In this study, in order to research the causes lead to fatigue crack in the coped stringer of a steel railway bridge, we take the steel railway bridge which actually occurs fatigue crack as a research object and manufacture the full size of crossbeam-stringer and floor system model to perform the experimental test. The results indicates that, the fatigue crack in the top of coped area of stringers is caused by the reciprocal action of the in plane stress in the tip of coped area of web by the negative moment occurred in the end of the stringers. While the fatigue crack in the bottom of coped area of stringers is due to the plane stress caused by the out-plane deformation relative to the bottom of coped area of web of the fixed end in the stringers.

A Study on the Development of Force Limiting Devices(FLD) which Induce Yielding before Elastic Buckling (좌굴전 항복유도 장치(FLD) 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak;Oh, Young Suk;Kim, Chae Yeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • The steel members are applied to high rise building since they have high strength compare to the concrete member. On the other hand, the elastic buckling is likely to occur in steel member because of their small section. When the elastic buckling occur, the steel structure lose a load carrying capacity. The steel frame would be unstable due to a rapid decline in strength by buckling. The purpose of this study is the development of FLD(Force Limiting Device) to prevent a elastic buckling for a slender member. Further, the behavior of steel structures with FLD would be stable by high energy absorption capacity. The proposed type of FLD is the type of out-of-plane resistance. In this study, member test and FEM analysis for proposed type were performed. The test parameters are thickness and gradient angle of out-of-plane plate. The proposed type may be effective method for FLD.

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis (실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Kim, Da Young;Lee, Ha Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.1-13
    • /
    • 2008
  • The web of a horizontally curved plate girder bridge is, in general, subject to not only longitudinal flexural in-plane stress but also out-of-plane bending stress. Therefore, the induced stresses in the fillet welded joints at the intersection of the web and flange plates in the curved plate girder bridge can be considerably high, and the welded joints of gusset plates connecting the main girder to the floor beams or sway bracings can be subject to much more severe situation than those in the ordinary straight plate girder bridge. In order to investigate the cause of fatigue crack occurred in a curved girder bridge that has been served in about 23 years, in this study, field load tests have been performed to obtain the stress characteristics at the welded joint under the real traffic flow. Using the test results, we have investigated the causes of the occurrence of various fatigue cracks and have estimated the fatigue lives for the cracks. In addition, the characteristics of structural behavior at welded joint of the curved girder bridge have been examined by comparing the FE analysis and the field test result.

The Effect of Blast Cleaning for Steel Bridge Painting on Fatigue Behavior of Out-of-Plane Gusset Welded Joints (강교 도장용 블라스트 처리가 면외거셋 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Le, Van Phuoc Nhan;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.583-590
    • /
    • 2008
  • Blasting has been applied in newly-built steel structures for cleaning forged surfaces and increasing the adhesive property of applied painting systems. However, the effect of the blast cleaning on fatigue behavior of welded joints is not clear. In this paper, fatigue tests were carried out on out-of-plane gusset welded joints and the effect of the blast cleaning on the fatigue behavior was studied. The curvature radius at the weld toe of the surface-treated specimens by using the blast method is larger than that of as-welded specimens. By the blast cleaning compressive residual stresses were induced into weld toes. The experimental results showed that the fatigue life of surface-treated specimens is longer than that of as-welded specimens, even though the fatigue life of surface-treated specimens and that of as-welded specimens are not clearly different in the high stress range. About a 160% increase in fatigue limit could be realized by using blast cleaning.

Effect of patch repair in aluminum plate with a circular hole by 3-D full layerwise model (완전 층별이론에 의한 원공을 갖는 알루미늄 판의 패치 보강 효과)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok;Yang, Seung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.304-307
    • /
    • 2009
  • 본 논문에서는 3차원 모델링을 이용하여 원공을 갖는 알루미늄 판의 패치 보강효과에 대해 알아보고자 한다. 구조물의 노후화로 인해 높은 응력을 받는 부재의 응력 특이점에서 내구력이 급격하게 저하되거나 때로는 부재의 정적파괴를 유발시키는 원인을 제공한다. 이로 인해 과거에는 손상된 모재에 보강 재료를 연결시키기 위하여 리벳 또는 볼트와 같은 기계적 연결을 통해 보강하였으나 최근에는 접착패치보강 기법이 그 주류를 이루고 있다. 패치 보강시 일면 패치 보강으로 인하여 면외 휨 효과가 발생된다. 판의 두께 방향에 따른 응력집중계수를 별도로 분석하였다. 기존의 3차원 솔리드 요소는 해의 정확성은 뛰어난 반면에 상당한 컴퓨터 시간을 요구하는 단점을 가지고 있다. 이러한 문제를 극복하기 위해서, 본 논문에서는 각 층의 변위장을 2차원 형상함수와 1차원 형상함수의 조합으로 구성하여, 면내거동에 대한 p-세분화와 면외거동에 대한 p-세분화를 분리시키는 방식을 취한다. 또한, 에너지 함수의 적분시 Gauss-Lobatto 적분법을 사용하여 절점의 위치에서의 응력점을 구하는 경우, 외삽과정을 계산하는 단계를 생략하면서도, 해의 정확성 측면에서는 거의 차이가 없기 때문에 좀 더 효율적인 수치적분이 될 수 있다.

  • PDF

Applicability of Hammer-Peening Treatment for Fatigue Life Improvement of Fatigue Damaged Weld Joints (피로손상된 용접이음의 피로수명 향상을 위한 햄머피닝 처리법의 적용)

  • Kim, In Tae;Park, Min Ho;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2013
  • In this study, fatigue tests were performed on longitudinal out-of-plane gusset fillet welded joints and transverse non-load-carrying cruciform rib fillet welded joints, and then applicability of hammer-peening treatment on improvement of fatigue life for fatigue damaged weld joints were investigated. Fatigue tests were carried out on three types of gusset and rib welded specimens: as-welded specimens, post-weld hammer peened specimens and hammer peened specimens at 50% of as-welded specimen's fatigue life. Before and after hammer peening treatment, the geometry of weld toes and surface stresses near weld toes were measured. As a result of hammer peening treatment, compressive residual stresses of 30-83MPa were introduced near weld toes of the gusset and rib welded joints, and 130% increase in fatigue life and fatigue limit of the welded joints could be realized by hammer peening treatment at 50% fatigue life of as-welded conditions.

Three Dimensional Interlaminar Stress Analysis of a Composite Patch Using Stress Functions (응력함수를 이용한 복합재 적층 패치의 3차원 층간 응력 해석)

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Heung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.488-491
    • /
    • 2009
  • 본 논문에서는 응력함수와 Kantorovich method를 이용하여 기저판(substrate)에 인장과 굽힘이 작용할 때 복합재 패치의 3차원 응력을 해석하였다. 면내 방향과 면외 방향의 두 응력함수에 가상 공액일의 법칙(Complementary virtual work principle)을 적용하였으며 복합재 패치의 자유 경계조건과 바닥의 기저판으로부터 전달되는 전단 수직 응력 조건을 부여하였다. 이를 통해서 패치 구조물의 지배방정식을 연립 미분 방정식 형태의 고유치 문제로 변환하여 응력함수를 구하였다. 위 방법의 타당성과 효용성을 검증하기 위한 수치 예제로 cross-ply, angle-ply, quasi-isotropic의 패치 적층 배열을 고려하였으며, 층간 응력함수 값이 자유 경계에서 최고치를 나타내고 패치 중심부로 갈수록 급격히 감소하는 모습을 확인하였다. 제안된 기법은 기저판에 인장하중이 작용하는 경우뿐만 아니라 굽힘 하중이 작용하는 경우에도 정확한 예측이 가능하여, 패치 구조물의 층간 응력을 포함한 3차원 응력을 해석하는데 있어서 효율적인 해석 도구로서 사용할 수 있을 것이라 사료된다.

  • PDF