• Title/Summary/Keyword: 면선원

Search Result 64, Processing Time 0.034 seconds

내수면 선박의 항행안전에 관한 연구

  • Gang, Seong-Jin;Park, Mun-Su;Kim, Chang-Je
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.66-68
    • /
    • 2013
  • 이 연구에서는 내수면 선박의 현황 및 사고사례에 대하여 조사 및 분석하였다. 또한, 내수면 선박에 적용되는 여러 법규의 내용을 내수면 선박의 항해설비, 선원의 자격요건, 내수면선박의 항행규정으로 분류하고 검토하였으며, 외국의 주요 내수면 항행규정 사례 및 국제해상충돌방지규칙을 고찰하여 국내 항행규정의 문제점 및 보완점을 제안하였다.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF

Dose Distributions in a Shielded Vaginal Cylinder using a HDR Co-60 Source (고선량 Co-60 선원이용시 차폐된 질 원주기구의 영향)

  • 김진기;김정수;김형진;권형철;강정구
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • The present work is determine to the dose distribution reduced by the insertion of a shielded into a vaginal cylinder around a $\^$60/CO source in brachytherapy, and to the source calibration. It was investigated by measuring the relative dose around a 2.5cm diameter shielded vaginal cylinder in a polystyrene phantom by use of a ionization chamber. Measurements were made with the cylinder unshielded and 0.55cm thick 90$^{\circ}C$ lead shields inserted. Also, the dose distribution compared measurement value with calculation value according to the device manufacturer and the multiple-divided dose tables. A reduction in dose was observed on the unshielded side of the cylinder which increased with distance from the source and it does 4.4% within 1cm from the surface of the cylinder. On the shielded side of the cylinder, the dose at the surface is reduced to about 20.4% of its value without the shield. The effective attenuation factor entered for the 90$^{\circ}C$ lead shielded cylinder was average 0.2 in a $\^$60/CO moving source. In comparision with the dose calculation mathods, the multiple-divided dose tables are difference less than ${\pm}$4.1% with measured data in a $\^$60/Co source.

  • PDF

Analysis of the Distributional Effects of Radioactive Materials on External Gamma Exposure (방사성물질의 분포특성에 따른 외부 감마피폭해석)

  • Han, Moon-Hee;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Choi, Young-Gil
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.211-218
    • /
    • 1998
  • The distributional effects of radioactive materials on external gamma exposure have been analyzed. An approximate method for estimating external gamma dose given from an arbitrary distribution of radioactive material has been developed. The minimum gamma exposure given from a point source is shown at 0.07 MeV if the source to receptor distance is shorter than 10 m. But if the receptor to point source distance is longer than 20 m, gamma exposure rate increases monotonously according to the average gamma energy. For the analysis of the effects of volume source, we estimated the gamma dose given from different size of hemisphere in which radioactive materials are distributed uniformly. When the radius of hemisphere is longer than 40 m, external gamma dose rate increases monotonously. The gamma dose rate given from the radioactive materials deposited on the ground shows the minimum value at 0.07 MeV in any case. The analysis shows that external gamma exposure is strongly dependent on the distribution of radioactive materials in the environment and gamma energy.

  • PDF

Development of VR-Based Safety Education Content for Sailors (VR 기반 선원 안전교육용 콘텐츠 개발)

  • Kim, Ji-Yoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1898-1907
    • /
    • 2022
  • Every year, many shipping companies provide seaman safety education programs periodically to reduce ocean-traffic accidents. However, undertaking the regular safety training for seaman has been difficult because of litimation of space and time. Recently, VR technolgy is received attentions to overcome previous problems. It can provide users educational interactions between a user and virtual environment and fulfill sustainable teaching. In this paper, VR-based safety education content for sailors has been developed, and it includes four programs. Also, survey was conducted with four questionnaires such as immersiveness, easy to experience, satisfaction of education contents, comparative evaluation between traditional education program and VR education contents. As the result, immersiveness questionnaire could be gain 53.83% positive assessment, and easy to experience could be gain 65.38% positive assessment, and satisfaction could be gain 69.23% positive assessment. Lastly, comparative evaluation between traditional education program and VR education contents could be gain about 46% positive and 34% neutral assessments.

A Comparative Study on Seafarers' Industrial Accident Compensation System - Focusing on the German Legislation - (선원재해보상에 관한 비교법적 연구 - 독일의 법제를 중심으로 -)

  • Park, Jun-Mo;Park, Sung-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.567-576
    • /
    • 2022
  • Seafarers are exposed to various unpredictable maritime risks due to the spatial specificity of the working environment of the sea; thus, sufficient compensation for injured crewmembers is needed. However, Korea does not provide such compensation. Therefore, this study attempted to examine the Maritime Labor Act and the Industrial Accident Insurance Act of Germany, an advanced European social insurance country, and derive implications compared to Korea. First, we investigated how compensations are managed by a public institution in Germany and by shipowners in Korea. Second, regarding the contents of accident compensation, Germany does not only provide continuous treatment and care through various support systems, but also operates various programs to enable a return to ship work. In contrast, Korea has a temporary compensation system that allows shipowners to avoid liability for accident compensation, which is disadvantageous to shipwrecked seafarers. Finally, in Germany, workers' compensation insurance is public, judged considering the origin of work, whereas in Korea, it is determined by shipowners or insurance companies. Therefore, it is necessary to establish a public institution in charge of crew accident compensation to ensure proper compensation for crewmembers in Korea and to improve the Seafarers Act or system to provide compensation for additional medical care, disability pension, and rehabilitation benefits.

Trouble in Source Driving System of a $^{60}Co$ Teletherapy Unit ($^{60}Co$ 치료장치의 선원 구동상의 문제점)

  • Kang, Wee-Saing
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.65-69
    • /
    • 1986
  • An asymmetry in dose profile of a $^{60}Co$ teletherapy unit was found by means of water-phantom measurement. The reason of that trouble was confirmed to be the abnormal 'ON' position of the source, which is resulted from the high friction between contiguous surfaces of the spring for driving the source to 'OFF' position. Lubrication in the spring improved the mobility a little, but was not a radical repair. The radical repair was to replace the old spring by new one. Periodic maintenance for source driving system and periodic measurement of field symmetry are required for prevention of abnormal 'ON' position of $^{60}Co$ source.

  • PDF

A Study on the Validation of Effective Angle of Particle Deposition according to the Detection Efficiency of High-purity Germanium Gamma-ray Detector (고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • The distance between the source and the detector, the diameter of the detector, and the volume effect of the radiation source result in a change in solid angle at the detector entrance, which affects the determination of detection efficiency by causing a difference in path length within the detector. A typical analysis method for calculating solid angles was useful only for a source (60Co) with a simple geometric structure, so in this experiment, the distance between the detector and the source was measured by switching on for up to 25 cm with the reference point of window cap 0.5 cm. In addition, 450 and 1000 ㎖ Marinelli beaker of standard volumetric sources were closely adhered to the detector. For circular point sources co-axial with the detector, the change in the solid angle to the distance from the detector window is equal to half the square radius of the source versus the square radius of the detector, if the resulting relationship of the calculation analysis results in the detector being less than the radius of the source. Since the solid angular difference is 0.5 the result of Monte Carlo is acceptable. The relationship between detector and source distance is shown. Solid angles have been verified to decrease rapidly with distance. Measurement and simulation results for a volumetric source show a difference of ±1.01% from a distance of 0 cm and less than 4 % when the distance is reduced to 5 and 10 cm. It can be seen that the longer distance, the smaller efficiency angle, and the exponential increase in attenuation as the energy decreases, is reflected in the calculation of efficiency. Thus, the detection efficiency has proved sufficient for the use of solid angle and Monte Carlo codes.

A Study on the dose distribution produced by $^{32}$ P source form in treatment for inhibiting restenosis of coronary artery (관상동맥 재협착 방지를 위한 치료에서 $^{32}$ P 핵종의 선원 형태에 따른 선량분포에 관한 연구)

  • 김경화;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the dose distributions of a $^{32}$ p uniform cylindrical volume source and a surface source, a pure $\beta$emitter, were calculated in order to obtain information relevant to the utilization of a balloon catheter and a radioactive stent. The dose distributions of $^{32}$ p were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly in the volume and on the surface in the form of a cylinder with a radius of 1.5 mm and length of 20 mm. The energy of $\beta$particles emitted is chosen at random in the $\beta$ energy spectrum evaluated by the solution of the Dirac equation for the Coulomb potential. Liquid water is used to simulate the particle transport in the human body. The dose rates in a target at a 0.5mm radial distance from the surface of cylindrical volume and surface source are 12.133 cGy/s per GBq (0.449 cGy/s per mCi, uncertainty: 1.51%) and 24.732 cGy/s per GBq (0.915 cGy/s per mCi, uncertainty: 1.01%), respectively. The dose rates in the two sources decrease with distance in both radial and axial direction. On the basis of the above results, the determined initial activities were 29.69 mCi and 1.2278 $\mu$Ci for the balloon catheter and the radioactive stent using $^{32}$ P isotope, respectively. The total absorbed dose for optimal therapeutic regimen is considered to be 20 Gy and the treatment time in the case of the balloon catheter is less than 3 min. Absorbed doses in targets placed in a radial direction for the two sources were also calculated when it expressed initial activity in a 1 mCi/ml volume activity density for the cylindrical volume source and a 0.1 mCi/cm$^2$ area activity density for the surface source. The absorbed dose distribution around the $^{32}$ P cylindrical source with different size can be easily calculated using our results when the volume activity density and area activity density for the source are known.

  • PDF