• Title/Summary/Keyword: 면상

Search Result 364, Processing Time 0.024 seconds

Study of Shoreline Surveying and DB Construction (해안선 조사 측량 및 DB구축 연구)

  • Kim, Byung-Guk;Lee, Jong-Ki
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.61-65
    • /
    • 2002
  • 오늘날 해안선은 육지와 바다의 경계이상의 의미를 가지고 있다. 지표면상에서 가장 독특한 공간 속성을 가지고 있는 해안선은 그 위치정보와 속성정보로 다양한 사용자와 공동체에게 귀중한 정보를 제공한다. 그러나 국가적 관심부족으로 육상부문 지리정보에 비해 해안선부근 해역 및 육역에 대한 과학적 정보가 빈약하고 해안선 조사와 관련한 학술 및 기술적 기초조사 자료의 DB구축이 부진한 상태이다. 본 논문에서는 2001년에 수행된 태안지역 해안선 조사 측량 및 DB구축 연구를 통해 앞으로 수행할 전국 해안선 조사 측량 및 DB구축의 기본계획을 수립하였고, 얻어진 데이터를 연안관리를 위한 기초데이터로 활용할 수 있는 방안을 연구하였다.

  • PDF

A study on the stress analysis for rake face of a tool with crack in cutting process (적삭중인 공구의 경사면상에 crack을 갖는 경우의 응력해석에 관한 연구)

  • 김원익;남준우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-75
    • /
    • 1987
  • The determination of stress distributions on the rake face of tool are important to understand the mechanism of metal cutting. For this reason, many researchers have been payed much effort to analyize machining stress distribution on the rake face. The author's photoelastic experiment has shown that the stress distributions on a rake face can be obtained photoelastically by using a specially designed tool made of epoxy resin plate, and also, Stress Intensity Factors $k_{I}$, $k_{II}$ and Crack Extension Angle can be deter mined by using Linear Elastic Fracture Mechanics.ics..

  • PDF

LASER를 이용한 CRT shadow mask의 진동 및 열변형 측정 시스템 개발

  • 강성구;김정기;배종한;남은희;권진혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.56-57
    • /
    • 2000
  • 본 연구에서는 반도체 레이저로부터 조사되는 빔을 CRT 모니터의 shadow mask에 입사시켜 반사되는 빔을 렌즈를 통하여 센서로 사용한 위치검출소자(PSD)와 CCD에 확대 결상시켜 측정하였다. 센서로 사용한 PSD는 검출영역이 12mm, 위치분해능은 0.2um이며, 센서의 검출면상에서의 입사빔의 위치에 따라 매우 선형적인 특성을 가지며, 실시간적으로 처리할 수 있다는 장점을 갖고 있다. CCD는 1/3inch(512$\times$480pixels)를 사용하였다. (중략)

  • PDF

Carbon & Polymer 복합체를 이용한 발열 히터

  • Park, Hyeon-Gi;Kim, Gi-Gang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.254.2-254.2
    • /
    • 2013
  • Cu wire 발열패드는 대중화된 히터로 많이 이용되지만 높은 소비전력(70 w이상)으로 에너지 효율을 중요시 하는 미래 소재로는 적합하지 않아 효율이 높은 발열 소재의 연구가 이루어지고 있다. 이에 본 실험에서 Graphite표면에 Amide 기능화를 유도된 Carbon nanotube (Electrical Conductivity $10^5$ s/cm, Thermal Conductivity >3,000 w/mk)를 분산 시켜, Graphite의 우수한 전기 전도도의 특성을 이용할 뿐만 아니라 Carbon nanotube의 접착 특성을 통해 물리적 특성을 향상시켜 면상발열체의 도막 특성 향상뿐만 아니라 효율적 발열을 유도 하고자 한다.

  • PDF

Melting of ice on the heating plate with split fins (분할된 핀붙이 전열면상에서의 얼음의 용융)

  • 홍희기;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • One of the important application of a contact melting process is a latent thermal energy storage owing to its high heat flux. In some previous works, the split fins have been employed in order to enhance the melting speed. In the present work, the close contact melting was experimentally investigated using an ice as specimen for both split and non-split fins. It was shown that the contact melting by split fins increases the melting rate compared to that of non-split ones.

  • PDF

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.