• Title/Summary/Keyword: 멤스 가속도계

Search Result 3, Processing Time 0.017 seconds

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반의 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Shim, Min-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.872-878
    • /
    • 2008
  • Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.

Direct acceleration feedback control of a washing machine during spinning process (드럼 세탁기 탈수시 가속도 피드백 제어)

  • Lee, Chin-Won;Seichiro, Suzuki;Sun, Hee-Bok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1642-1647
    • /
    • 2003
  • The market of the horizontal axis washing machine (drum washing machine) has been growing drastically in Korea by about 80% annually since 2000. As market grows fast, the customerTs demands concerning quality becomes more strict and various. Imbalance sensing is a key technology to reduce the NVH problem in a washing machine, because the laundry is time-variant and uncontrollable source of imbalance, which can cause more than 200kgf exciting force. In this paper, imbalance-sensing methods are briefly reviewed, new acceleration sensing circuits are examined, and finally the control algorithm of spinning process is proposed and validated.

  • PDF