• Title/Summary/Keyword: 멤버십 함수

Search Result 24, Processing Time 0.019 seconds

Feature Extraction based FE-SONN for Signature Verification (서명 검증을 위한 특정 기반의 FE-SONN)

  • Koo Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.93-102
    • /
    • 2005
  • This paper proposes an approach to verify signature using autonomous self-organized Neural Network Model , fused with fuzzy membership equation of fuzzy c-means algorithm, based on the features of the signature. To overcome limitations of the functional approach and Parametric approach among the conventional on-line signature recognition approaches, this Paper presents novel autonomous signature classification approach based on clustering features. Thirty-six globa1 features and twelve local features were defined, so that a signature verifying system with FE-SONN that learns them was implemented. It was experimented for total 713 signatures that are composed of 155 original signatures and 180 forged signatures yet 378 original signatures written by oneself. The success rate of this test is more than 97.67$\%$ But, a few forged signatures that could not be detected by human eyes could not be done by the system either.

  • PDF

Robot vision system for face tracking using color information from video images (로봇의 시각시스템을 위한 동영상에서 칼라정보를 이용한 얼굴 추적)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • This paper proposed the face tracking method which can be effectively applied to the robot's vision system. The proposed algorithm tracks the facial areas after detecting the area of video motion. Movement detection of video images is done by using median filter and erosion and dilation operation as a method for removing noise, after getting the different images using two continual frames. To extract the skin color from the moving area, the color information of sample images is used. The skin color region and the background area are separated by evaluating the similarity by generating membership functions by using MIN-MAX values as fuzzy data. For the face candidate region, the eyes are detected from C channel of color space CMY, and the mouth from Q channel of color space YIQ. The face region is tracked seeking the features of the eyes and the mouth detected from knowledge-base. Experiment includes 1,500 frames of the video images from 10 subjects, 150 frames per subject. The result shows 95.7% of detection rate (the motion areas of 1,435 frames are detected) and 97.6% of good face tracking result (1,401 faces are tracked).

Fuzzy Uncertainty Analysis of the Bird Strike Simulation (퍼지이론을 적용한 불확실성이 존재하는 조류충돌 해석)

  • Lee, Bok-Won;Park, Mi-Young;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.983-989
    • /
    • 2007
  • The bird strike simulation is a problem characterized by a high degree of uncertainty. It deals with nonlinear dynamics, complicated models of bird materials and geometry, as well as a plenty of possible boundary and initial conditions. In this complex field, uncertainty management plays an important role. This paper aims to assess the effect of input uncertainty of bird strike analysis on the impact behavior of the leading edge of the WIG(Wing in Ground Effect) craft obtained with finite element analysis using LS-DYNA 3D. The uncertainties of the bird strike simulation arise due to imprecision or lack of information, due to variability or scatter, or as a consequence of model simplification. These uncertain parameters are represented by fuzzy numbers with their membership functions quantifying an initial guess for the actual value of the model parameter. Using the transformation method as a special implementation of fuzzy arithmetic, the model can be analyzed with the intention of determining the influence of each uncertain parameter on the overall bird strike behavior.

Blind Nonlinear Channel Equalization by Performance Improvement on MFCM (MFCM의 성능개선을 통한 블라인드 비선형 채널 등화)

  • Park, Sung-Dae;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2158-2165
    • /
    • 2007
  • In this paper, a Modified Fuzzy C-Means algorithm with Gaussian Weights(MFCM_GW) is presented for nonlinear blind channel equalization. The proposed algorithm searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function and Gaussian weighted partition matrix instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function(RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a simplex genetic algorithm(GA), a hybrid genetic algorithm(GA merged with simulated annealing(SA): GASA), and a previously developed version of MFCM. It is shown that a relatively high accuracy and fast search speed has been achieved.