• Title/Summary/Keyword: 멤버십 함수

Search Result 24, Processing Time 0.022 seconds

Modeling and Performance Analysis of Non-linear System Using Type-2 Fuzzy Logic Systems (Type-2 Fuzzy Logic System을 이용한 비선형 시스템의 모델링 및 성능 분석)

  • 안성배;김동원;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.76-79
    • /
    • 2003
  • 퍼지 로직 시스템(FLS)은 다양한 분야에서 성공적으로 사용되고 있다 퍼지 로직 시스템의 멤버십 함수와 규칙은 언어적인 정보나 수치적 데이터를 사용하여 표현된다. 또한 이러한 정보나 데이터에는 불확실성과 노이즈 등이 존재한다. 그러나 단순한 퍼지 로직 시스템으로노이즈가 포함된 불확실한 정보를 효과적으로 다루고 표현하는 데는 한계가 있다. 그러므로 노이즈가 포함된 정보를 효율적으로 처리하기 위해 본 논문에서는 type-2 FLS를 이용한다. 노이즈가 포함되어 불확실한 정도를 정확한 값으로 표현하기 어려울 때, type-2 FLS은 보다 정확하게 정보들을 다를 수 있음을 보인다. 비선형 시계열 시스템인 Box-Jenkins 데이터를 이용하여 singleton Type-1 FLS과 non-singleton type-1 FLS의 결과 값을 확인하고 이의 성능을 type-2 FLS과 비교, 분석한다.

  • PDF

Design of Membership Ranges for Robust Control of Variable Speed Drive Refrigeration Cycle Based on Fuzzy Logic (가변속 냉동사이클의 강인제어를 위한 퍼지로직의 멤버십함수 범위 설계)

  • Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • This paper focuses on systematic design about the membership ranges of the main design factors such as control error, control error rate, and sampling time for the fuzzy logic control of the variable speed drive refrigeration cycle. The upper and the lowest limit of the membership ranges are set up from the data of static characteristics obtained by experiments. Three kinds of membership ranges on the control error and the control error rate are tested by experiments. Especially, an effect of sampling time on control performance is also investigated in the same way. Experimental data showed the control error rate and the sampling time strongly effected on the control performance of the refrigeration cycle with a variable speed drive.

Speed Control for Low Speed Diesel Engine by Hybrid F-NFC (Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어)

  • Choi, G.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

Noise Removal Algorithm based on Fuzzy Membership Function in AWGN Environments (AWGN 환경에서 퍼지 멤버십 함수에 기반한 잡음 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1625-1631
    • /
    • 2020
  • With the development of IoT technology, various digital equipment is being spread, and accordingly, the importance of data processing is increasing. The importance of data processing is increasing as it greatly affects the reliability of equipment, and various studies are being conducted. In this paper, we propose an algorithm to remove AWGN according to the characteristics of the fuzzy membership function. The proposed algorithm calculates the estimated value according to the correlation between the value of the fuzzy membership function between the input image and the pixel value inside the filtering mask, and obtains the final output by adding or subtracting the output of the spatial weight filter. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and analyzed using difference image and PSNR comparison. The proposed algorithm minimizes the effect of noise, preserves the important characteristics of the image, and shows the performance of efficiently removing noise.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

ELINT Intra-pulse Modulation Recognition using Fuzzy Algorithm (퍼지 알고리즘을 이용한 전자정보의 펄스 내 변조 인식)

  • Kim, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.1986-1995
    • /
    • 2013
  • The ELINT system which derives intelligence from electromagnetic radiations plays an important role in modern electric warfares. Among radar characteristics inferred from the signals, intra-pulse modulation scheme is a useful feature to identify modern radars. This paper proposes the method to classify intra-pulse modulation schemes such as UM, PSK, BFSK, QFSK, LFM and NLFM based on the fuzzy algorithm. The proposed method defines fuzzy membership functions to characterize input signals, and then it calculates accordance rates for each modulation scheme with fuzzy inference rules. The experimental results show that the probability of correct recognition is more than 95% for SNR > 10dB.

Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator (유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural network learning algorithms. The proposed system learns membership functions for input variables using unsupervised competitive learning algorithm and output information using supervised outstar learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The control input to the process is determined by error, velocity and variation of error. Simulation and experiment results show a robustness of ACFAC compared with the PID control and neural network algorithms.

  • PDF

The Tuning Method on Consequence Membership Function of T-S Type FLC (T-S형 퍼지제어기의 후건부 멤버십함수 동조방법)

  • Choi, Han-Soo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.

Autonomous Guided Vehicle Control Using GA-Fuzzy System (GA-Fuzzy 시스템을 이용한 무인 운송차의 제어)

  • 나영남;손영수;오창윤;이강현;배상현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.45-55
    • /
    • 1997
  • According to the increase of factory-automation in the field of production, the importance of autonomous guided vehicle's(AGV) role is also increased. The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study, the research about action base system to evolve by itself is also being actively considered. In this paper, we composed an active and effective AGV fuzzy controller to be able to do self-organization. For composing it, we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. Self-organizing controlled(S0C) fuzzy controller proposed in the paper is capable of self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

Improvement of PM10 Forecasting Performance using Membership Function and DNN (멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상)

  • Yu, Suk Hyun;Jeon, Young Tae;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.