• Title/Summary/Keyword: 메탄화

Search Result 529, Processing Time 0.029 seconds

化學熱파이프의 평형 및 열수송 효율

  • 권오붕;윤창현
    • Journal of the KSME
    • /
    • v.22 no.5
    • /
    • pp.364-370
    • /
    • 1982
  • 메탄화-재생반응을 화학열파이프사이클에 이용할 때 장애요인의 하나인 탄소 석출 문제는 주어진 온도에 따라 초기 주입가스 몰비를 적절히 택함으로써 피할 수 있으며 초기 주입가스 CO량에 비해 $CO_{2}$량을 줄이고 $H_{2}$량을 과잉 공급하면 넓은 온도범위에서 탄소 석출을 막을 수 있다. 메탄화-재생반응을 이용한 열수송효율은 송전효율보다 다소 떨어지나 최종으로 필요한 에너지 형태가 열인 경우, 화학열파이프 시스템을 이용하는 것이 더 유리하다고 생각한다.

  • PDF

A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application (이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.323-327
    • /
    • 2020
  • The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was prepared by impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.

Biogas upgrading and Producing the Liquefied Bio-methane by Cryogenic Liquefaction Process (바이오가스 고질화와 초저온액화공정을 통한 액화바이오메탄 생산)

  • Shim, Dongmin;Sung, Hyunje;Park, Seongbum;Kim, Nackjoo;Chang, Homyung;Lee, Jaeyoung;Lee, Youngmin;Lee, Woocheul;Oh, Hwasoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.246.1-246.1
    • /
    • 2010
  • 본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.

  • PDF

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy (반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄)

  • Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-73
    • /
    • 2014
  • This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

Effect of Hydrogen Addition on Autoignited Methane Lifted Flames (자발화된 메탄 부상화염에 대한 수소 첨가의 영향)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

Bioconversion of Methane: Current Technology and Prospect (메탄 바이오전환 기술의 현황과 전망)

  • Hwang, In Yeub;Lee, Eun Yeol
    • Prospectives of Industrial Chemistry
    • /
    • v.19 no.2
    • /
    • pp.28-35
    • /
    • 2016
  • 천연가스, 셰일가스 및 바이오가스의 주성분인 메탄은 지구온난화 가스로, 감축대상인 동시에 차세대 탄소 자원으로 주목을 받고 있다. 기존의 화학적 메탄전환방법은 대규모 설비투자가 요구되는 규모의 경제가 적용되어 소규모 한계 가스전에는 활용이 어렵다. 이러한 문제점을 극복하기 위하여 최근에 생물학적 전환법이 대안으로 고려되고 있다. 메탄자화균은 메탄산화효소(methane monooxygenase)를 이용하여 상온 상압에서 메탄을 탄소원으로 사용하여 생장할 수 있다. 따라서 메탄자화균의 메탄 대사경로를 기반으로 대사공학을 활용하면 메탄으로부터의 다양한 종류의 고부가가치 산물 생산이 가능하다. 본고에서는 메탄자화균을 이용한 메탄의 바이오전환 기술의 현황 및 전망에 대하여 논의하였다.

Thermal Decompostion of Methane Using Catalyst in a Fluidized Bed Reactor (유동층반응기에서 촉매를 이용한 메탄 열분해)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.487-492
    • /
    • 2008
  • In this paper, Thermocatalytic decomposition of methane in a fluidized bed reactor (FBR) was studied. The technical approach is based on a single-step decomposition of methane over carbon catalyst in air/water vapor free environment. The factors affecting methane decompostion catalyst activity in methane decomposition reactions were examined. The fluidization phenomena in a gas-fluidized bed of catalyst was determined by the analysis of pressure fluctuation properties, and the results were confirmed with characteristics of methane decomposition. The effect of parameters on the H2 yield was examined for methane decompostion. The decompstion rate was affected by the fluidization quality such as mobility, U-Umf, carbon attrition, elutriation and effectiveness density of fluidization gas.

Estimation of SNG reaction on Ni catalyst from various support and promoter (담체 및 조촉매 변화에 따른 Ni 촉매상의 SNG 반응 평가)

  • Ryu, Jaehong;Kang, Sukhwan;Kim, Suhyun;Kim, Jinho;Lee, Sunki;Yoo, Youngdon;Lim, Hyojun;Byun, Changdae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116.2-116.2
    • /
    • 2010
  • 석유의 고갈과 고유가 시대에 직면한 현재 전 세계적으로 매장량이 풍부하고 안정적으로 공급이 가능한 석탄 활용에 대한 관심이 급격히 증가하고 있다. 석탄의 활용 분야 중 석탄 가스화(Coal gasifier)에서 유도된 합성가스를 이용하여 합성천연가스(SNG) 생산을 할 수 있는 메탄화(Methanation) 공정에서는 대부분 Ni계열 촉매를 사용하고 있는데, 촉매를 설계하는 관점에서 담체(Support), 조촉매(Promoter), Ni의 함량 등과 같은 설계 변수에 따라 촉매의 활성과 함께 메탄 수율이 결정된다. 본 연구에서는 다양한 담체상에 Ni를 담지 하여 20bar 압력에서 SNG 반응에 높은 활성을 보일 수 있는 촉매를 확보하고자 실험을 수행하였으며, 그 결과 $NiO/SiO_2-Al_2O_3$ 촉매가 가장 우수한 활성을 보이는 것을 알 수 있었다. 또한 $NiO/SiO_2-Al_2O_3$ 상에 Cerium, Ferric oxide 조촉매를 첨가하여 SNG 반응 활성 평가를 수행하였다.

  • PDF

SNG Production Process Study in the gasification system with various feedstock (석탄, 석탄 촤, 바이오매스 등의 고체시료 가스화 반응을 통해 발생된 합성가스를 이용한 SNG 제조공정 연구)

  • Kim, Su-Hyun;Yoo, Young-Don;Kim, Mun-Hyun;Kim, Na-Rang;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.779-783
    • /
    • 2007
  • 본 연구에서는 가스화공정과 수성가스 전환공정, $CO_2$ 분리공정, 메탄화 공정을 주요 구성으로 한 대체(또는 합성)천연가스(SNG, Substitute or Synthetic Natural Gas)제조공정을 대상으로 석탄, 석탄 촤, 바이오매스 등의 다양한 고체시료를 적용하였을 경우 각 시료의 가스화 반응을 통해 얻어진 합성가스를 이용한 SNG 제조 공정 특성을 파악하고자 하였다. 석탄, 석탄 촤, 바이오매스를 적용한 SNG 공정해석 결과 가스화 공정, 수성가스 전환 공정, 메탄화 공정의 운전 용도가 각 800도, 450도, 300도이고, 수성가스 전환 공정 출구의 합성가스 $H_2$/CO ratio(mol basis)가 3인 조건에서 SNG/Feed ratio는 석탄, 석탄 촤, 바이오매스가 각각 0.35, 0.34, 0.08로 나타났고. SNG Efficiency(%) 는석탄, 석탄 촤 바이오매스에 대해서 각각 61.2%. 48.2%, 17.5%로 나타났다. 또한, 석탄 촤를 대상으로 가스화 공정에서의 산화제 투입 조건 및 스팀 투입조건의 변화에 따른 합성가스 발생 특성을 살펴보았다.

  • PDF

Design of Cooling System for Thermochemical CO2 Methanation Isothermal Reactor (열화학적 CO2 메탄화 등온반응기의 수순환 냉각시스템 설계)

  • LEE, HYUNGYU;KIM, SU HYUN;YOO, YOUNGDON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • CFD analysis including optimization process was conducted to design shell and tube CO2 methanation reactor cooling system. The high-pressure saturated water flowed into the cooling system and was evaporated by heat flux from reacting tubes. The optimization process decided the gap between tubes and reactor diameter to satisfy objective functions related to temperature. The results showed that the gap and diameter reduced about 30% and 3.6% respectively. Averaged surface temperature satisfied the target value and the min-max deviation was minimized.