• 제목/요약/키워드: 메탄올 화염

검색결과 7건 처리시간 0.016초

화점높이 변화에 따른 Whirl Fire의 질량감소 및 공기유입속도 (Mass Loss and Air Entrainment Rate of Whirl Fire by Height of Fire Source)

  • 박형주
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.126-131
    • /
    • 2011
  • 화점높이 변화에 따른 회오리 화염의 질량감소속도와 공기유입속도를 알아보기 위하여 회오리 화염 연구에서 많이 사용되고 있는 인화성 액체인 메탄올과 노말 헵탄을 사용하였다. 용기의 재질은 스테인레스로 100mm ${\times}$ 100mm ${\times}$ 50mm 크기의 사각형으로 제작하여 연소실험에 사용하였다. 외부로부터 화염으로 의 공기유입속도는 화점의 높이를 0cm에서 30cm로 변화시켰을 때, 0cm의 높이에서 가장 빠른 공기유입속도를 나타냈으며, 동일한 화점의 높이에서는 다점풍속기의 높이가 30cm인 경우에 가장 빠른 평균 공기유입속도와 최대 공기유입속도를 나타내었다. 또한 메탄올과 노말 헵탄의 회오리 화염의 결과로부터 질량감소속도는 노말 헵탄이 메탄올에 비해 1.33~1.58배, 외부로부터 화염으로의 공기유입속도는 노말 헵탄이 메탄올에 비해 4.38~5.44배 각각 빠름을 알 수 있었다. 결론적으로, 회오리 화염에서 질량감소속도와 외부에서 화염으로의 공기유입속도는 화점의 높이가 증가할수록 감소하며, 같은 실험조건에서 시료의 고위/저위 발열량이 높을수록 증가한다는 것을 확인할 수 있었다.

화점높이 변화에 따른 메탄올의 소규모 Pool 및 Whirl Fire의 연소특성 (Combustion Characteristics of Pool and Whirl Fire on Methanol by Height of Fire Source using the Small Scale)

  • 박형주
    • 한국화재소방학회논문지
    • /
    • 제26권3호
    • /
    • pp.73-78
    • /
    • 2012
  • 화점높이 변화에 따른 풀 화재와 회오리 화염의 연소특성을 알아보기 위하여 인화성 액체인 메탄올을 $100{\times}100{\times}50$ 크기의 스테인레스 재질의 사각형 용기에 넣고 연소실험을 하였다. 연소시간, 질량감소속도, 화염온도, 화염높이 및 외부로부터 화염으로의 공기유입속도 등을 측정하였으며, 연소시 화염의 거동은 비디오카메라를 이용하였다. 모든 실험결과로부터 화점높이 변화에 따른 연소특성은 풀 화재보다는 회오리 화염에 있어서 더 큰 영향을 준다는 것을 알 수 있었다.

메탄올 액적 화염의 음향파 가진에 의한 재점화 (Reignition of Methanol Droplet Flames Under Acoustic Pressure Oscillation)

  • 김홍집;손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.114-122
    • /
    • 1999
  • Reignition as special cases of acoustic pressure responses of flame are numerically studied by employing methanol droplet flame as a laminar flamelet. Quasi-steady flame responses occur in the range of small amplitude, low frequency oscillation. Reignition phenomena can occur when, by increasing the frequency of large amplitude acoustic pressure, the magnitude of characteristic acoustic time is the same order of that of characteristic reaction time of flames. And more increasing of amplitude of acoustic pressure induces the direct extinction of flame. Flame can sustain its own intensity even under the steady extinction temperature in case of high frequency acoustic oscillation, and this tendency is remarkable with increasing frequency. Reignition regime with respect to amplitude and frequency of acoustic pressure doesn't exist in low frequency($10^2$ Hz, in this study), but broadens with frequency of acoustic pressure.

화점높이 변화에 따른 Pool Fire의 연소특성 (Combustion Characteristics of Pool Fire by Height of Fire Source)

  • 박형주;차종호
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4671-4676
    • /
    • 2010
  • 화점높이 변화에 따른 풀 화재의 연소특성을 알아보기 위하여 인화성액체인 메탄올과 노르말 헵탄을 $100mm{\times}100mm{\times}50mm$ 크기의 사각형 용기에 내에 넣고 연소실험을 하였다. 용기의 재질은 스테인레스를 사용하였다. 연소시간, 질량감소속도, 화염온도, 화염높이 및 외부에서 화염으로의 공기유입속도 등을 측정하였으며 연소시 화염의 거동은 비디오카메라를 이용하여 촬영하였다. 실험을 통해서 화점의 높이가 증가할수록 외부에서 화염으로 유입되는 차가운 공기의 유입량이 증가하여 풀 화재의 연소특성이 감소함을 확인 할 수 있었다.

정적연소기를 사용한 메탄올의 연소특성에 관한 연구 (Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber)

  • 이태원;이중순;정성식;하종률
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

메탄올 Bluff-Body 난류 화염내의 화염구조 및 $NO_{x}$ 생성 특성에 대한 수치적 연구 (Flamelet Modeling of Structures and $NO_{x}$ Formation Charateristics in Bluff-Body stabilized Methanol Flames)

  • 이준규;김성구;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.37-42
    • /
    • 2001
  • This paper computes the bluff-body stabilized jet and flame. This study numerically investigates the nonpremixed $C_{2}H_{4}-air$ jet for the nonreacting case and the nonpremixed $CH_{3}OH-air$ turbulent flames for the reacting case using the laminar flamelet model on modified KIVA2 code. And this study predicts $NO_{x}$ formation characteristics using Eulerian Particle Flamelet Model. In the present study, the turbulent combustion model is applied to analyze both nonreacting and reacting case. And both standard $k-{\varepsilon}$ model and modified $k-{\varepsilon}$ model are used in nonreacting case. Calculations are compared with experimental data in terms of velocity, mixture fraction, mixture fraction Root Mean Square and Temperature. The present model correctly predicts the essential features of flame structures and $NO_{x}$ formation characteristics in the bluff-body stabilized flames.

  • PDF

폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造) (Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge)

  • 장희동;장한권;조국;길대섭
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.41-45
    • /
    • 2007
  • 폐실리콘 슬러지로부터 테트라메틸오쏘실리케이트(TMOS)와 실리카 나노분말을 제조하였다. 먼저, 실리카 나노분말의 전구체인 TMOS를 폐실리콘 슬러지로부터 촉매 화학반응에 의해 합성하였다. TMOS의 합성실험에서 반응온도가 $130^{\circ}C$ 이상에서는 반응시간이 5시간 경과 시 반응온도에 무관하게 100%의 반응율을 나타내었다. 그러나 $150^{\circ}C$ 이상에서는 초기 반응속도가 빨라졌다. 메탄올 주입속도를 0.8 ml/min에서 1.4 ml/min로 증가시에는 3시간 경과 후에는 반응율이 변화하지 않았다. 이와 같이 합성된 TMOS로부터 화염분무열분해법에 의해 실리카 나노분말을 제조하였다. 제조된 실리카 나노분말은 구형이며, 무응집 형태이었다. 평균입자 크기는 전구체의 주입속도 및 농도변화에 따라 9 nm에서 30 nm로 변화하였다.