• Title/Summary/Keyword: 메탄술폰산

Search Result 11, Processing Time 0.025 seconds

Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent (침출제로 황산과 메탄술폰산의 화학적 반응성 비교)

  • Tran, Thanh Tuan;Moon, Hyun Seung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • Methanesulfonic acid (MSA) can be considered effective in the leaching of metals because of its advantageous physical and chemical properties. The chemical reactivities of MSA and sulfuric acid were compared based on their structures and the dissolution data of Co and Ni metal. The inductive and resonance effects play a vital role in the chemical reactivities of these two acids. The dissolution percentages of Co and Ni in the sulfuric acid solution were higher than those in the MSA solution under the same experimental conditions. Considering the strong acidity of MSA and the high solubility of its metal salts, MSA can be employed as a leaching agent for the recovery of metals.

Feasibility Study of Methanesulfonic Acid (MSA), an Alternative Lixiviant to Improve Conventional Sulfuric Acid Leaching of NCM Black Mass (NCM Black Mass 황산침출 개선을 위한 대체침출제 메탄술폰산의 적용가능성 연구)

  • Hyewon Jung;Jeseung Lee;Ganghoon Song;Minseo Park;Junmo Ahn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.58-68
    • /
    • 2024
  • Critical minerals such as nickel, cobalt and lithium, are known as materials for cathodic active materials of lithium ion batteries. The consumption of the minerals is expected to grow with increasing the demands of electric vehicles, resulting from carbon neutrality. Especially, the demand for LIB (lithium ion battery) recycling is expected to increase to meet the supply of nickel, cobalt and lithium for LIB. The recycling of EOL (end-of-life) LIB can be achieved by leaching EOL LIB using inorganic acid such as HCl, HNO3 and H2SO4, which are regarded as hazardous materials. In the present study, the potential use of MSA (Methanesulfonic acid), as an alternative lixiviant replacing sulfuric acid was investigated. In addition, leaching behaviors of NCM black mass leaching with MSA was also investigated by studying various leaching factors such as chemical concentration, leaching time, pulp density (P/D) and temperatures. The leaching efficiency of nickel (Ni), cobalt (Co), lithium (Li), and manganese (Mn) from LIB was enhanced by increasing concentration of lixiviant and reductant, leaching time and temperature. The maximum leaching of the metals was above 99% at 80℃. In addition, MSA can replace sulfuric acid to recover Ni, Co, Li, Mn from NCM black mass.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Study on the Surface Morphology and Control of Impurity by Organic Additive for Tin electro-refining (주석 전해정련에서 유기첨가제에 따른 표면형상 및 전해불순물 제어에 관한 연구)

  • Park, Sung Cheol;Son, Seong Ho;Kim, Yong Hwan;Han, Chul Woong;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.49-53
    • /
    • 2016
  • The electro-refining process was performed to purify the casted tin crude metal from waste tin in methanesulfonic acid. The surface morphologies of electrodeposited tin on cathode were observed, the dendrite and delamination were inhibited by glycol group of organic additive. The impurity concentrations of tin crude metal and deposited metal were analyzed using ICP-OES. Quantitative analysis on casted tin crude metal showed that it consists of tin with 97.280 wt.% and several impurity metals of Ag, Cu, Pb, Ni, and etc. After tin electro-refining, the purity of tin increased up to 99.956 wt.%. Reduction current by cyclic voltammetry seems to be closely related to behavior of impurity in tin electro-refining.

Synthesis and Physical Properties of Biocompatible and Biodegradable Chitin Derivatives III. -Synthesis and Solubility of Ester Chitin Derivatives- (생체적합성과 생분해성을 갖는 키틴유도체의 합성 및 물성 III -에스테르 키틴 유도체의 합성과 용해 특성-)

  • Kim, Seon-Jeong;Lee, Young-Moo;Sung, Yong-Kiel;Kang, Inn-Kyu;Park, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.785-790
    • /
    • 1993
  • Three ester-type chitin derivatives were synthesized by reacting chitin with acetic anhydride, propionic anhydride and n-butyric anhydride to form acetyl chitin(AC), propionyl chitin(PC) and n-butyryl chitin(BC). Methanesulfonic acid was used as a catalyst. FT-IR spectra and solid state CP/MAS $^{13}C-NMR$ spectra of three chitin derivatives showed that the substituents were mainly incorporated in the $C_6$ position of chitin. The ester-type chititn derivatives were dissolved well in formic acid and swollen in aqueous acidic solution.

  • PDF

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

Characteristics of Redox Flow Battery Using the Soluble Lead Electrolyte (납이 용해된 전해액을 사용하는 레독스 플로우 전지의 특성)

  • An, Sang-Yong;Kim, Eung-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.214-218
    • /
    • 2011
  • The electrochemical characteristics and performance of redox flow battery using the soluble lead has been evaluated. Cyclic voltammetry was performed on the materials to evaluate deposition and dissolution of lead and lead dioxide. In the negative region, a reduction peak is not observed, and on the reverse scan, on-set voltage is observed at -0.47 V(vs SCE). In the positive region, the distinct peak is observed on the forward and reverse scan. The charge/discharge experiments were carried out graphite electrode in the beaker cell. The charging(deposition) of lead occurs at around 0.5 V(vs SCE) and discharging(dissolution) of lead occur at around 0.25 V(vs SCE). The potential difference is about 0.25 V. The charging(deposition) of dioxide lead is at 1.77 V(vs SCE) and discharging(dissolution) is at around 0.95 V(vs SCE) during first cycle. On subsequent cycles, the charging of dioxide lead starts at below 1.5 V(vs SCE), after a period the voltage increase to 1.7 V(vs SCE). The voltage of discharging is stable at around 1.0 V(vs SCE).

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application (실리카 화합물을 함유한 PVA/PSSA-MA 전해질 막의 제조 및 특성과 연료전지로의 응용)

  • Byun, Hong-Sik;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.336-344
    • /
    • 2008
  • This manuscript deals with the investigation of the possibility of the crosslinked poly(vinyl alcohol) membranes with both poly(styrene sulfonic acid-co-maleic acid) and 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) for the fuel cell application. The studies were focused on the characterization of the resulting membranes through water content, thermal gravimetric analysis, ion exchange capacity, ion conductivity and methanol permeability measurements and then compared with the existing Nafion membrane. Typically, the ion conductivity lied in the range of $10^{-3}$ to $10^{-2}\;S/cm$ while the methanol permeability showed the range of $10^{-6}$ to $10^{-8}\;cm^2/s$.

A Study on the Microstructure Formation of Sn Solder Bumps by Organic Additives and Current Density (유기첨가제 및 전류밀도에 의한 Sn 솔더 범프의 미세조직 형성 연구)

  • Kim, Sang-Hyeok;Kim, Seong-Jin;Shin, Han-Kyun;Heo, Cheol-Ho;Moon, Seongjae;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • For the bonding of smaller PCB solder bumps of less than 100 microns, an experiment was performed to make up a tin plating solution and find plating conditions in order to produce a bump pattern through tin electroplating, replacing the previous PCB solder bumps process by microballs. After SR patterning, a Cu seed layer was formed, and then, through DFR patterning, a pattern in which Sn can be selectively plated only within the SR pattern was formed on the PCB substrate. The tin plating solution was made based on methanesulfonic acid, and hydroquinone was used as an antioxidant to prevent oxidation of divalent tin ions. Triton X-100 was used as a surfactant, and gelatin was used as a grain refiner. By measuring the electrochemical polarization curve, the characteristics of organic additives in Triton X-100 and gelatin were compared. It was confirmed that the addition of Triton X-100 suppressed hydrogen generation up to -1 V vs. NHE, whereas gelatin inhibited hydrogen generation up to -0.7 V vs. NHE. As the current density increased, there was a general tendency that the grain size became finer, and it was observed that it became finer when gelatin was added.