• Title/Summary/Keyword: 메탄산화

Search Result 265, Processing Time 0.035 seconds

Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode (Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성)

  • Cho Seung-Koo;Park Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The Pt-Ru electrocatalyst was Prepared on Nafion membrane modified with Polypyrrole by chemical reduction of $H_2PtCI_6\;and\;RuCl_3$ solution ai precursor. From the electron dispersive microanalysis spectroscope(EDS), the Pt-Ru catalyst was located on the surface of Ppy/Nafion composite. The electrochemical oxidation of methanol on Pt-Ru catalyst deposited in Polypyrrole-impregnated Nafion was investigated by cyclic voltammetry (CV) and chronoamperometry. The onset potential of methanol oxidation was shifted to negative potential as the $RuCI_3$ concentration in deposition solution. Also, it was known that the Pt-Ru binary catalyst on Nafion could be directly deposited by using Polypyrrole and resulting Pt-Ru/PPy/Nafion was available for methanol oxidation.

The Promotion Effects on Partial Oxidation of Methane for Hydrogen Production over Co/Al2O3 and Ni/Al2O3 Catalysts (수소생산을 위한 메탄 부분산화용 코발트와 니켈 촉매에서의 조촉매 첨가 효과)

  • Hong, Ju-Hwan;Ha, Ho-Jung;Han, Jong-Dae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • The Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. And the promotion effects of metals such as Mg, Ce, La and Sr in partial oxidation of methane over these $Co/Al_2O_3$ and $Ni/Al_2O_3$ were investigated. Reaction activity of these catalysts for the partial oxidation of methane was investigated in the temperature range of 450~$650^{\circ}C$ at 1 atm and $CH_2/O_2$ = 2.0. The catalysts were characterized by BET, XRD and SEM/EDX. The results indicated that the catalytic performance of these catalysts was improved with the addition of 0.2 wt% metal promoter. The Mg promoted $Co/Al_2O_3$ catalyst showed the highest $CH_4$ conversion and hydrogen selectivity at higher temperature than $500^{\circ}C$. The Ce and Sr promoted Ni catalysts superior to Co-based catalysts in the low temperature range. The addition of metal promoter to $Co/Al_2O_3$ and $Ni/Al_2O_3$ catalysts increased the surface area.

Difluoromethane Synthesis over Fluorinated Metal Oxide (불화된 금속산화물 촉매상에서 이불화메탄의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1998
  • The influences of reaction temperature, HF/DCM mole ratio, contact time and catalyst type on activity and selectivity of difluoromethane synthesis via hydrofluoriation of dichloromethane over fluorinated catalyst have been studied. It has been found that fluorinated $Cr/Al_2O_3$ catalysts, show better performance compared to pure fluorinated $Al_2O_3$ catalyst and then, non-treated catalysts demonstrate better than catalysts pretreated with hydrogen and air. The results show that the optimum reaction conditions are found as follows : reaction temperature at $340^{\circ}C$, mole ratio of HF/DCM 5 or above and contact time 20 sec. or above. With these conditions the maximum attainable yield of difluoromethane has been found to be greater than 80%. In particular, the activity and the selectivity of difluoromethane do not change with the reaction time on stream up to 8 hours.

  • PDF

Shock Tube and Modeling Study of Ignition in Methane (메탄 기체의 점화 현상에 관한 충격관 실험 및 모델 연구)

  • Jee, Sung Bae;Kim, Won Kyoung;Shin, Kuan Soo
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.156-160
    • /
    • 1999
  • The ignition of methane-oxygen mixtures highly diluted with argon was examined in the temperature range of 1516-1937 K behind a reflected shock wave. The ignition delay times were measured by monitoring pressure profiles and the total emissions at 5.0 cm from the end wall. It was found that the experimental result was correlated by the temperature and the concentrations of the gases. To complement the experiment, computer modeling study of methane oxidation was carried out using a GRI 1.2 mechanism.

  • PDF

Decomposition Characteristics of Methane and VOC Using Electron Beam (전자빔을 이용한 메탄과 VOC의 분해특성)

  • Kim, Jo-Cheon;Kim, Gi-Jun;Lee, Gi-Wan;Jeon, Jin;Lee, Jae-Hyung;Han, Beom-Su;Lim, Su-Gil
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.289-290
    • /
    • 2001
  • 비메탄계 휘발성 유기화합물(Non-Methane Volatile Organic Compounds; NMVOCs)은 많은 부분이 용제를 사용하는 공정에서 발생되어 광화학적 산화물 형성 등의 대기질 악화를 초래시키는 것으로 알려져 있다. 반면에 메탄가스는 지구온난화의 원인물질로 환경에 많은 영향을 미치는 것으로 알려져 있고, 국내의 쓰레기 매립지에서 발생되는 양은 년간 112만톤으로 추정되어 메탄의 자원화나 처리에 대한 연구가 매우 필요한 실정이다. (중략)

  • PDF

Effect of Cu Addition in Cu/Fe/Zr-Mixed Metal Oxide Mediums for Two-step Thermochemical Methane Reforming (2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과)

  • Cha, Kwang-Seo;Kim, Hong-Soon;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seak;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.618-624
    • /
    • 2007
  • thermochemical methane reforming consisting of two steps on Cu/Fe/Zr mixed oxide media was carried out using a fixed bed infrared reactor. In the first step, the metal oxide was reduced with methane to produce CO, $H_2$ and the reduced metal oxide in the temperature of 1173 K. In the second step, the reduced metal oxide was re-oxidized with steam to produce $H_2$ and the metal oxide in the temperature of 973 K. The reaction characteristics on the added amounts of Cu in Cu/Fe/Zr mixed oxide media and the cyclic tests were evaluated. With the increase of the added amount of Cu in Cu/Fe/Zr mixed oxide media, the conversion of $CH_4$, the selectivity of $CO_2$ and the $H_2/CO$ molar ratio were increased, while the selectivity of CO was decreased in the first step. On the other hand, the evolved amount of $H_2$ was decreased with increasing the added amount of Cu in the second step. The $Cu_xFe_{3-x}O_4/ZrO_2$ medium added with Cu of x = 0.7 showed good regeneration properties in the 10th cyclic tests indicating that the medium had high durability. In addition, the gasification of the deposited carbon in the water splitting step was promoted with the addition of Cu in the media.

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.

산화질소를 이용한 질화산화막 특성 연구

  • Choe, Yeong-Cheol;Han, Yeong-Jae;Jeon, Ho-Jin;Kim, Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.316.1-316.1
    • /
    • 2016
  • 지구 온난화로 인한 기후변화 현상이 점차 가시화 되고 있는 가운데 탄산가스를 비롯한 온실가스의 배출을 저감하기 위한 연구개발 노력과 관심이 고조되고 있다. 지구 대기층이 가지는 이러한 온실효과는 산업화 경향이 두드러지면서 화석에너지의 사용 증대 등 인위적 요인들에 의해 많이 증가하게 되었다. 온실가스 중에서 산화이질소(N2O)는 이산화탄소(CO2)와 메탄(CH4) 다음으로 많이 배출되는 성분이며 지구온난화 효과는 이산화탄소 분자의 310배에 달한다. 본 연구에서는 반도체 미세 패터닝(Pattering)에 게이트 산화막의 두께가 점차 얇아짐에 따라 발생하는 문제점을 해결하고 특성을 향상시키기 위해 사용되는 질화산화막(SiON)을 증착 시, 기존 산화이질소(N2O) 대신 산화질소(NO)를 사용하여 대체 가능 여부를 평가하고자 하였다. 본 연구에서는 산화질소(NO) 사용량의 변화를 통하여 FT-IR 및 Refractive Index 측정하면서 기존 산화이질소(N2O)를 이용하여 구현된 질화산화막 막질과 결과를 비교하였고, 질화산화막 증착율 및 파티클 발생 수준을 비교하였다.

  • PDF

Partial Oxidation of Methane Over Ceria-promoted Catalysts Derived from Ni-substituted Hydrotalcite (세리아가 첨가된 니켈 치환 하이드로탈사이트로부터 유도된 촉매에 의한 메탄의 부분산화)

  • Lee, Seung-Hwan;Kim, Mi-So;Kwak, Jung-Hun;Lim, Tae-Hoon;Nam, Suk-Woo;Hong, Seong-Ahn;Yoon, Ki-June
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2008
  • Partial oxidation of methane was carried out by ceria-promoted Ni-substituted hydrotalcite-derived catalysts ($Ce_xNi_3$-HTlc ; x=$0.3{\sim}1.2$) in a fixed-bed reactor. The Ce/Ni ratio of 0.3/3 in the catalyst showed the best catalytic activity but the Ce/Ni ratio became higher above 0.3/3, the catalyst became less active in short-term tests. No ceria promoted catalyst was started to decrease $CH_4$ conversion after 20 h but the Ce/Ni ratio 0.3/3 catalyst was kept its stability in long-term tests.

  • PDF