• Title/Summary/Keyword: 메탄산화반응

Search Result 133, Processing Time 0.026 seconds

Performance and Operational Characteristics of Natural Gas Fuel Processor for 1kW Class PEMFCs (1kW급 고분자 연료전지용 통합형 천연가스 개질 수소 제조 시스템의 성능 및 운전 특성)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-20
    • /
    • 2006
  • 한국에너지기술연구원에서는 가정용 고분자연료전지 열병합 발전시스템을 위한 통합형 천연가스 연료처리 시스템을 개발해 왔다. 가정용 시스템으로서 필수적인 소형화와 고효율을 현실화하기 위해, 연료처리 시스템의 각 단위 공정 즉 수증기 개질, 수성가스 전이, 선택적 산화 공정 등을 이중 동 심관형 반응기에 통합하여 상호 열교환이 용이하도록 반응기를 설계하였다. 현재 시험 운전 중인 Prototype-I 연료 처리 시스템은 1kW급 고분자 연료전지 열병합 발전 시스템에 개질 가스를 공급하기 위해 설계되었으며, 기초 성능은 정격 부하 운전시 열효율 78% (HHV 기준), 메탄 전환율 91%이다. 개질 가스 내 일산화탄소 농도는 고분자 연료전지 전극의 피독을 피하기 위해 10ppm 이하로 유지되어야 하며, Prototype-I 연료 처리 시스템은 백금과 루테늄 촉매를 적용한 선택적 산화 반응기를 통해 개질 가스 내 일산화탄소 농도를 10ppm 이하로 제거하였다. 일반 가정에서는 고분자 연료전지 시스템의 부하 변동이 예상되기 때문에 연료 처리 시스템의 부하 변동 운전 특성도 살펴보았다 정격 부하에서 80%, 60%, 40%로 부하를 변동하며 운전하였고, 각 부하에서 안정한 메탄 전환율과 10ppm이하의 일산화탄소 농도를 보였다. 80%까지는 열효율이 77%로 큰 변화를 보이지 않았으며, 60%에서는 76%, 40%에서는 72%로 열효율이 감소하는 현상을 보였다 연료 처리 시스템의 일일 시동-정지 운전시 내구성을 테스트 중이다. 현재까지 50여회의 일일-시동 정지를 시도하였다 시동 후 약 세 시간가량의 정력 부하 운전을 실시한 후 부하 변동을 실시하였고, 총 운전 시간 8시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다

  • PDF

A Study of Partial Oxidation of Methane by Pd Catalyst - Effects of Reaction Temperature - (팔라듐 촉매의 메탄 부분산화에 관한 연구 - 반응온도에 따른 효과 -)

  • Lee, Taek-Hong;Mun, Yeong-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.244-249
    • /
    • 2004
  • Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it has been candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Energy conservation by catalytic combustion on low temperature drying process (촉매연소에 의한 저온 건조공정에서의 에너지 절약효과)

  • 강성규;유인수;하영옥;원장묵
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.98-102
    • /
    • 1994
  • 천연가스의 주성분인 순수 메탄에 대한 촉매 산화반응은 Pd촉매가 가장 양호하나 LP가스의 주성분인 프로판에 대해서는 Pt촉매가 가장 양호한 결과를 보였다. 그러나 유황 피독된 Pd촉매는 메탄에 대해 영구피독 현상을 보였고, fresh한 Pd촉매는 연료 중 미량의 유황분량에 의해 반응 개시온도가 지연되는 경향을 보였다. 이와 같은 촉매독 영향이 적은 Rh촉매버너를 개발하여 8000시간 이상 성공적인 연소 실험을 하고 있으며 C 방적의 염색 시험기에 적응 실험한 결과 기존의 적외선 전기 건조기에 비해 에너지 절감은 약30-40%를 기하였고 연료비는 70-80%의 절약효과를 얻었다.

  • PDF

Effects of La Addition and Preparation Methods on Catalytic Activities for Methane Partial Oxidation Catalysts (메탄 부분산화반응 촉매에 La 첨가 및 제조방법에 따른 촉매활성에 미치는 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Synthesis gas was produced by the partial oxidation of methane. For the preparation of catalysts, Ni, known to be active in this reaction and cheap, was used as the active component and $CeO_2$, having high oxygen storage capability and high redox ability, was used as the support. The catalysts were prepared by the impregnation and urea methods. The catalyst prepared by the urea method showed about 11 times higher surface area and finer particle size than that prepared by the impregnation method. The catalysts prepared by the urea method showed higher methane conversion and synthesis gas selectivity than that prepared by the impregnation method. In this reaction, carbon deposition is a problem to be solved, so La was added to the catalyst system to reduce the carbon deposition. TGA analysis results showed that there was 2% carbon deposition with La-added catalysts and 16% with La-free catalysts. It was found that the addition of La decreases the amount of carbon deposition and prevents catalyst deactivation.

Chromophoric Structures of Alkali Lignin (알카리리그닌의 착색구조(着色構造)에 관(關)한 연구(硏究))

  • Yoon, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.1-30
    • /
    • 1981
  • To investigate the formation of the chromophoric structures taking place during the alkaline pulping vanillyl alcohol [${\alpha}-^{13}C$] guaiacylglycerol-${\beta}$-aryl ether [${\alpha}-^{13}C$ or ${\gamma}-^{13}C$] and phenylcoumarn [${\alpha}-^{13}C$] units as model lignins were treated with 1N sodium hydroxide at 165$^{\circ}C$ for 1.5-3 hours. From the chemical structures of the isolated products and $^{13}C$-NMR Spectra of the reaction mixtures, the main conclusion is as follows; 1) Condensation products of II-1-5 were identified from the reaction mixture of vanillyl alcohol treated with alkali and theses compounds afforded the quinonmethide structure(Fig. 3-7) by air oxidation. 2) Treatment of guaiacylglycerol-${\beta}$-aryl ether unit gave ${\varphi}$-aryl-${\beta}$-aroxy quinone structures (IV-15, IV-16), diguaiacyl-1, 4-penta-diene ${\beta}$, ${\beta}$'-diaroxyl distyrene methane unit, ${\beta}$-aroxy distyrene methane. These distyrene methanes of the compounds are transformed by air oxidation into the corresponding o-quinonemethide units (V-8, V-9). 3) On the treatment of phenylcoumaran, the stilbene derivative was formed in quantitative yield and dimerized(VI-11) in preference to oxidation to the corresponding extended quinone structures. The chromophoric structures taken place during the alkaline treatment of the model lignins are thought to be some important types in alkaline pulping on the basis of the reaction mechanism in this experiment.

  • PDF

A Kinetic Study on the Oxidation of Diphenylmethane under Aliquat 336 Phase Transfer Catalyst (Aliquat 336 상이동 촉매하에서 디페닐메탄의 산화반응에 관한 속도론적 연구)

  • Lee, Hwa-Soo;Moon, Jeong-Yeol;Na, Suk-En;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.373-377
    • /
    • 1994
  • A mechanism for the synthesis of benzophenone from oxidation of diphenylmethane under Aliquit 336 phase transfer catalyst is investigated in this study. The production rate of benzophenone increased with the increasing amount of Allquat 336 and potassium tert-butoxide. At low concentrations of diphenylmethane and oxygen, the reaction order was first with the concentrations of diphenylmethane and oxygen respectively, but it approached to zero order at high concentrations. Tert-butyl alcohol, by-product of the reaction, inhibited the formation of benzophenone. Experimental results fit fairly well to the following initial reaction rate equation derived from reaction mechanism. $$({\gamma}_{BP})_0={\frac{k_1k_3k_5[QCI]_0[DPM]_0[PTB]_0[O_2]_0}{k_2k_4[TBA]_0+k_2k_5[O_2]_0+k_3k_5[O_2]_0[DPM]_0}}$$

  • PDF

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.

Plasma Catalytic Methane Conversion over Sol-gel Derived Pt/TiO2 Catalyst in a Dielectric-barrier Discharge Reactor (DBD 반응기에서 솔-젤 법으로 제조된 Pt/TiO2 촉매를 이용한 메탄의 플라즈마 전환반응)

  • Kim, Seung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.455-459
    • /
    • 2007
  • Plasma catalytic methane conversion was carried out in the presence of sol-gel derived $Pt/TiO_2$ catalysts within a dielectric-barrier discharge (DBD) reactor. Plasma-assisted reduction (PAR) was applied to reduce the prepared $Pt/TiO_2$ catalysts in DBD reactor, and prepared catalysts were successively reduced by PAR within 20 min irrespective of the Pt loading and the calcination temperature. The highest methane conversion was 40% when 3 wt% $Pt/TiO_2$ and 5 wt% $Pt/TiO_2$ catalysts were used after calcination at $600^{\circ}C$. The selectivities of light alkanes ($C_2H_6$, $C_3H_8$, $C_4H_{10}$) were highly increased when $Pt/TiO_2$ catalysts were used in DBD reactor.