Tagging system is the system that allows internet users to assign new meta-data which is called tag to article, photo, video and etc. for facilitating searching and browsing of web contents. Tag cloud, a visual interface is widely used for browsing tag space. Tag cloud selects the tags with the highest frequency and presents them alphabetically with font size reflecting their popularity. However the conventional tag selection method includes known weaknesses. So, we propose a novel tag selection method Freshness, which helps to find fresh web contents. Freshness is the mean value of Kullback-Leibler divergences between each consecutive change of tag co-occurrence probability distribution. We collected tag data from three web sites, Allblog, Eolin and Technorati and constructed the system, 'Fresh Tag Cloud' which collects tag data and creates our tag cloud. Comparing the experimental results between Fresh Tag Cloud and the conventional one with data from Allblog, our one shows 87.5% less overlapping average, which means Fresh Tag Cloud outperforms the conventional tag cloud.
Proceedings of the Korea Contents Association Conference
/
2011.05a
/
pp.41-42
/
2011
DataCite 메타데이터 요소를 분석하여 OpenURL 학술 서비스 유형을 기술하기 위한 메타태그를 Key/Encoded-Value (KEV) 형식으로 확장 제안하였다. 학술 서비스 유형 분석을 위해 Scopus와 Web of Science, NDSL 서비스를 비교 검토하여 8개의 학술서비스 유형을 도출하였다. 또한 과학데이터 기술을 위한 DataCite 컨소시엄의 메타데이터 요소를 집중적으로 분석하여 9개의 대표속성을 도출 하였다.
With the increase in the spread of smart devices and the impact of COVID-19, the consumption of media contents through smart devices has significantly increased. Along with this trend, the amount of media contents viewed through OTT platforms is increasing, that makes contents recommendations on these platforms more important. Previous contents-based recommendation researches have mostly utilized metadata that describes the characteristics of the contents, with a shortage of researches that utilize the contents' own descriptive metadata. In this paper, various text data including titles and synopses that describe the contents were used to recommend similar contents. KLUE-RoBERTa-large, a Korean language model with excellent performance, was used to train the model on the text data. A dataset of over 20,000 contents metadata including titles, synopses, composite genres, directors, actors, and hash tags information was used as training data. To enter the various text features into the language model, the features were concatenated using special tokens that indicate each feature. The test set was designed to promote the relative and objective nature of the model's similarity classification ability by using the three contents comparison method and applying multiple inspections to label the test set. Genres classification and hash tag classification prediction tasks were used to fine-tune the embeddings for the contents meta text data. As a result, the hash tag classification model showed an accuracy of over 90% based on the similarity test set, which was more than 9% better than the baseline language model. Through hash tag classification training, it was found that the language model's ability to classify similar contents was improved, which demonstrated the value of using a language model for the contents-based filtering.
Journal of the Korean Society for Library and Information Science
/
v.44
no.1
/
pp.117-135
/
2010
We designed a structured folksonomy system in which queries can be expanded through tag control; equivalent, synonym or related tags are bound together, in order to improve the retrieval efficiency (recall and precision) of image data. Then, we evaluated the proposed system by comparing it to a tag-based system without tag control in terms of recall, precision, and user satisfaction. Furthermore, we also investigated which query expansion method is the most efficient in terms of retrieval performance. The experimental results showed that the recall, precision, and user satisfaction rates of the proposed system are statistically higher than the rates of the tag-based system, respectively. On the other hand, there are significant differences among the precision rates of query expansion methods but there are no significant differences among their recall rates. The proposed system can be utilized as a guide on how to effectively index and retrieve the digital content of digital library systems in the Library 2.0 era.
Journal of Korean Library and Information Science Society
/
v.33
no.2
/
pp.235-258
/
2002
Since 1991 when the first Web pages wore placed on the internet, information access for numerous Web sites has developed new indexing methods which are different from traditional methods. This paper, as a basic research, deals with Web indexing(Website indexing). Embedded indexing providing basics of Web indexing is examined, and essential META tags used in Web indexing are reviewed in brief. Finally, all the important issues of Web indexing are investigated in detail.
Proceedings of the Korea Information Processing Society Conference
/
2001.10b
/
pp.1411-1414
/
2001
사용자의 주변환경은 일정한 형태의 정보가 아닌 이질적인 형태의 정보들이 혼재되어 있다. 이동컴퓨팅에서 사용자는 다양한 경로를 통하여 여러 가지 다른 형태의 정보들을 획득하고, 다양한 방법으로 이를 처리하게 된다. 실생활의 정보는 디지털환경에서 처리하기 위하여 다양한 방법을 적용하여 디지털정보로 표현되어야 한다. 디지털정보는 표현방법에 따라서 다양한 포맷형식을 갖게되며, 적절한 응용프로그램과 연결되어 실행된다. 본 논문에서는 이동컴퓨팅환경에서 태그를 기반으로 하여 사용자에게 일관되고, 추상화된 정보획득방법을 제시한다. 또한, 태그를 실제 데이터를 표현하는 메타데이터에 대응시키며, 데이터를 처리할 수 있는 적절한 프로그램과 연결하는 과정을 내부적으로 처리하는 태그기반 이동정보서비스를 구현하였다. 제안된 방법론은 이동사용자에게 입 출력의 간편성을 제공하고, 주변환경에 대한 적응성을 향상시킬 것이다.
Journal of Korea Society of Industrial Information Systems
/
v.13
no.5
/
pp.133-141
/
2008
Social Web is turning current Web into social platform for knowing people and sharing information. This paper takes major social tagging systems as examples, namely delicious, flickr and youtube, to analyze the social phenomena in the Social Web in order to identify the way of mediating and linking social data. A simple Tag Ontology (TO) is proposed to integrate different social tagging data and mediate and link with other related social metadata. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tag ontology is also suggested as an applying field.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.94-96
/
2001
웹 기반의 분산 환경에서 데이터를 공유, 사용하려는 노력은 끊임 없이 계속되어 왔다. 기존의 HTML 문서를 이용할 경우에는 그 언어자체가 가지고 있는 한계성 때문에 효과적으로 문서를 공유하기가 어렵다. 이에 대한 대안으로 XML을 이용한 문서 교환 방법이 제시되고 있다. 하지만 서로 다른 DTD를 기반으로 작성된 XML문서를 교환할 경우에는 문제가 발생하게 된다. DTD가 서로 다른 사용자에 의해서 작성되었기 때문에 XML 문서 내의 태그 뿐만 아니라 문서가 가지고 있는 그 구조 또한 서로 상이하게 된다. 본 논문에서는 상이한 DTD를 기반으로 작성된 XML문서를 교환할 경우에 고려 해야 하는 XML 문서의 구조적 상이성의 예를 보여주고 이에 대한 해결 알고리즘을 제시한다. 문서 구조의 상이성은 적절한 매핑 테이블과 트리 구조를 이용한 태그 변환 방법을 이용하여 해결할 수 있다. 데이터 레지스트리와 본 논문에서 제안한 문서의 구조와 태그 변환 방법을 사용하면 XML 문서를 효과적으로 교환 할 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.281-283
/
2021
The representative companies mentioned in the recommendation service in the domestic OTT(Over-the-top media service) market are YouTube and Netflix. YouTube, through various methods, started personalized recommendations in earnest by introducing an algorithm to machine learning that records and uses users' viewing time from 2016. Netflix categorizes users by collecting information such as the user's selected video, viewing time zone, and video viewing device, and groups people with similar viewing patterns into the same group. It records and uses the information collected from the user and the tag information attached to the video. In this paper, we propose a method to improve video media recommendation by automatically generating metadata of video media that was written by hand.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.