• Title/Summary/Keyword: 메타카올린

Search Result 79, Processing Time 0.019 seconds

Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture (실란계 혼화제가 혼입된 소수성 시멘트 모르타르의 미세구조 및 강도특성)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • A hydrophobic emulsion consisting of PMHS and PVA was mixed into a cement mortar to observe changes in cement hydrate and microstructure, and to experimentally evaluate compressive strength and flexural strength. The hydrophobic emulsion was added with metakaolin and PVA fibers, and the stirring speed and sequence were adjusted to prepare a shell-concept hydrophobic emulsion. It was then mixed when mixing mortar to enhance filling of the internal pores and change of the hydrates. It was observed that the mortar mixed with a hydrophobic emulsion was filled with micropores and a coating film was formed on the surface of the hydrates by the emulsion. It was analyzed that the total pore area and porosity of the mortar mixed with the emulsion decreased from 30% to 60% compared to OPC, excluding the 50MK variable, which was extremely reduced and the median pore diameter decreased in some variables. It was also found that the compressive strength of the mortar mixed with emulsion 1% was increased up to 20%, but the strength of the mortar specimen mixed with 2% decreased to 50%.

Microstructure Analysis of Cement Composite containing PMHS Emulsion to Improve Hydrophobic (소수성 증진을 위한 PMHS 유액 혼입 시멘트 복합체의 미세구조 분석)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • For developing the durable eco-concrete, water-repellent and hydrophobic emulsion were prepared by stirring and mixing polymethyl hydrosiloxane and polyvinyl alcohol. After adding the PMHS emulsion cement paste, the hydration reaction characteristics and the change in chemical composition were analyzed through BSE and EDS analysis, and the micropores were evaluated by MIP test. Cement mixed with PMHS emulsion was analyzed to increase the hydration reactivity and to decrease the capillary porosity, but it was found that the capillary porosity varies depending on the degree of dispersion of the emulsion in the cement paste. In the case of the emulsion containing metakaolin, there was little difference in hydration degree and porosity from the case of using only the PMHS emulsion. However, when the cement surface was coated with PMHS emulsion, the contact angle was found to increase significantly compared to OPC, and it was analyzed that especially when PVA fiber was used together, it changed to a hypohydrophobic surface.

Application of Gaussian Mixture Model for the Analysis of the Nanoindentation Test Results of the Metakaolin-based Geopolymer with Different Silicon-to-Aluminum Molar Ratio (실리콘-알루미늄 몰 비의 변화에 따른 메타카올린 지오폴리머의 나노인덴테이션 결과 분석을 위한 가우시안 믹스쳐 모델의 활용)

  • Park, Sungwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • This study proposes the deconvolution method for the nanoindentation test results of geopolymer employing the Gaussian mixture model. Geopolymer has been studied extensively as an alternative construction material because it emits relatively lower CO2 compared to ordinary Portland cement. Geopolymer is made of aluminosilicate and alkaline solution, and the Si/Al molar ratio affects its mechanical properties. Previous studies revealed that the Si/Al molar ratio of 1.8~2.0 results in the highest compressive strength, and the Si/Al molar ratio over 1.8 degrades the compressive strength of geopolymer severely; however the reason for the compressive strength degradation is still unclear. To understand the effect of the Si/Al molar ratio on the geopolymer structure, this study exploits the nanoindentation. The phase deconvolution of the indent modulus data is successful using the Gaussian mixture model, and it is observed that the Si/Al molar ratio alters the homogeneity of the geopolymer. Geopolymer becomes more homogeneous up to an Si/Al molar ratio of 1.8 at which geopolymer exhibits the highest compressive strength. The examination of this study is assumed to be adopted as evidence of strength degradation by the Si/Al ratio higher than the optimum value.

Flexural Behavior of Hwangtoh Concrete Beams with Recycled PET Fiber (재생 PET섬유가 혼입된 황토 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Nam, Jin-Won;Yi, Na-Hyun;Kim, Jang-Jay-Ho;Choi, Hong-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.619-626
    • /
    • 2008
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement usage is suggested as one of the solutions for eco-friendly concrete. To reduce the amount of cement usage, the pozzolan-reaction materials such as ground granulated blast furnace slag, fly ash, and meta kaolin are widely used as the mineral admixture. Hwangtoh which deposited broadly in Korea is a well known eco-friendly material and the activated Hwangtoh with pozzolan-reaction can be practically used as a mineral admixture of concrete. Meanwhile, PET fiber made of recycled PET bottle is a type of recycled material, which can be used to control micro cracks in concrete. But the study about concrete mixed with recycled PET fiber is insufficient and the research of Hwangtoh concrete mixed with PET fiber is urgently needed presently. In this study, experiment and analysis flexural behavior of Hwangtoh concrete blended with recycled PET fiber are carried out. The results are discussed in detail.

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Concrete Resistance against the Penetration of Chloride Ions (혼화재 종류 및 치환율이 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Kim Young-Jin;Lee Sang-Soo;Kim Dong-Seuk;Yoo Jae-Kang
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.319-326
    • /
    • 2004
  • This paper investigates the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete replaced mineral admixtures for 3${\~}$4 replacement ratios under water-binder ratios ranged from 0.40 to 0.55. For the electro-migration test, Tang and Nilsson's method was used to estimate the diffusion coefficient of chloride ion. As a results, the water-binder ratios, kinds of mineral admixtures and replacement ratios, water curing periods had a great effect on the diffusion coefficient of chloride ion, and the optimal replacement ratios had a limitation for each mineral admixtures. Also, the use of mineral admixtures by mass(replacement of OPC) enhance the resistance ability against chloride penetration compared with the plain concrete. The compressive strength was shown related to the diffusion coefficient of chloride ion, the compressive strength increases with the diffusion coefficient of chloride ion decreasing. Below the 50 MPa, the variation of diffusion coefficient of concrete replaced mineral admixtures was bigger than that of plain concrete.

Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement (전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known by-product pozzolanic materials. Undensified and densified silica fume, ASTM class F and class C fly ash, and metakaolin were chosen as well-known pozzolanic materials, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property, were chosen for comparison. Drop in electrical conductivity at $40^{\circ}C$ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at $450{\sim}500^{\circ}C$ was also measured to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by incorporation of various waste materials. According to the experimental results, using "difference between maximum conductivity value and conductivity value at 4 hour" was found to be a reasonable approach to determine pozzolanic activity of a material. Pozzolanic activity measured using electrical conductivity correlates very well with that measured using the amount of Ca(OH)2 remained in the cement paste. Relatively good agreement was also found with electrical conductivity and 28 day compressive strength. It was found that electrical conductivity measurement can be used to evaluate pozzolanic activity of unknown materials.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.