• Title/Summary/Keyword: 메카트로닉스 교육

Search Result 89, Processing Time 0.019 seconds

Analysis on Static Load and Resonance Frequency of Bed in Turning and Hobbing Automatic Lathe for Precision Machining (선삭 및 호빙 가공용 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joo-Hwan;Lee, Yun-Chul;Jo, Eun-Jeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in turning and hobbing automatic lathe for precision machining. An automatic lathe operating at about 12,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 14.52 MPa, the maximum deformation amount was $12.15{\mu}m$, and the natural frequency was 189.43 Hz. The resonance frequency was calculated as 500 Hz, and the stability was confirmed by being in the range of 200 Hz or more, which is the processing condition.

A Review of Experimental Evaluation Method to Floor Environment Vibration Criteria for Semiconductor and Display Equipment (반도체·디스플레이 장비용 바닥 환경진동허용규제치의 실험적 평가방법 고찰)

  • An, Chae Hun;Choi, Jeong Hee;Park, Joon Soon;Park, Min Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The semiconductor and display equipment demands an ultra-fine precision of several nm to several ㎛, and the scale is getting smaller due to the explosive development. The manufacturing process equipment for such products with ultra-fine precision is very sensitive to ultra-small vibrations flowing from the floor, resulting in problems of production defects and yield degradation. The vibration criteria are a standard that regulates the vibration environment of the floor where such precision process equipment will be installed. The BBN vibration criteria defined the allowable vibration velocity level in the frequency domain with a flat and inclined line and presented a rating according to it. However, the actual vibration criteria have appeared with various magnitudes in the frequency domain according to the dynamic characteristics of individual equipment. In this study, the relationship between the relative motion of two major points in the equipment and the vibration magnitude of the floor is presented using the frequency response function of a simple 3-DOF model. It is describing the magnitudes according to the frequency of the floor vibration that guarantees the allowable relative motion and this can be used as the vibration criteria. In order to obtain the vibration criteria experimentally a method of extracting through a modal test was introduced and verified analytically. It provides vulnerable frequency and magnitude to floor vibration in consideration of the dynamic characteristics of individual equipment. And it is possible to know necessary to improve the dynamic characteristics of the equipment, and it can be used to check the vibration compatibility of the place where the equipment will be installed.

Study on Structure Design of High-Stiffness for Multi-Function Automatic Lathe Bed (다기능 자동 선반 베드의 고강성 구조설계에 관한 연구)

  • Jo, Eun-Jeong;Lee, Yun-Chul;An, Jong-Bok;Lee, Yeong-Sik;Lee, Jae-Kwon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.112-116
    • /
    • 2019
  • This study was carried out by structural analysis using finite element method for designing high rigidity structure of multi - functional automatic lathe bed. As a result of comparison, it was confirmed that the weight was designed to be higher than the maximum deformation amount. The shape and dimensions of the main pillars and walls of the bed were changed to derive the most suitable design for the multifunction automatic lathe bed. A model of structural design was derived with the goal of minimizing the maximum deformation amount of $20{\mu}m$ or less and the weight of the bed. As a result of applying the derived design improvement proposal to the multifunctional automatic lathe bed, 57.4% weight reduction and maximum principal stress decreased by 45.0% than the initial design model. It is expected that the optimum design that meets these design conditions will reduce the weight of the structure as well as improve the safety of the structure and reduce the machining error in the operation of the machine tool.

A Study on Wear Problem of Cartesian Robot for Semiconductor Equipment (반도체 장비용 직교 로봇의 스틸 밴드 마모 문제 해결에 관한 연구)

  • Kim, Jong Gyun;Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.152-156
    • /
    • 2021
  • Cartesian robot is used in semiconductor manufacturing. Friction between steel band and mover wears the steel band. The emission of wear particle from steel band contaminates semiconductor equipment. At the manufacturing site, the steel band is replaced periodically to minimize the generation of wear particle. But this is not a good way to minimize the generation of wear particle, because it is hard to specify the moment of replacement. We suggested the methodology to minimize the generation of wear particle using TRIZ technique. Also we made prototype robot which the solution is applied, and the performance of the solution was verified through experiments. As a result of verification, it was confirmed that the solution significantly reduced the generation of wear particle compared to the standard way.

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

A Study on Implementation of Automatic Evaluation System for Static Performance of 6 DOF MEMS Inertial Sensor (6자유도 MEMS 관성센서 정적성능 자동 평가 시스템 구현에 관한 연구)

  • Ji Won Park;Hussamud Din;Byeung Leul Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.62-66
    • /
    • 2023
  • With the advancement in technology and rapid increase in the demand for microelectromechanical systems (MEMS) based inertial measurement units (IMUs), high-volume production and test system remain a major challenge for the MEMS industry. To compete with the challenging market of Industry 4.0, here we developed an automatic test system to evaluate the performance of the ovenized IMU sensors as well as analyze the data. The automatic test system was developed by interfacing a commercial MEMS IMU (BMI 088) using LabVIEW. The BMI 088 was tested experimentally for long-term bias stability, ON/OFF bias repeatability, and root mean square (rms) noise. Furthermore, the data was analyzed through the developed test system. The results show that the automatic test system has improved the test time and reduced human effort. The developed automatic test system is a significant approach to MEMS research and development (R&D) to increase and improve the mass production of IMUs.

  • PDF

Convenient and Economic Mechatronics Education Using Small Portable Electronic Devices (휴대용 소형 전자장비를 이용한 편리하고 경제적인 메카트로닉스 교육)

  • Kang, Chul-Goo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Although mechatronics education in a mechanical engineering curriculum is recently recognized as important, its experimental education has been done generally in the laboratory equipped with all the apparatus and could not be done at home by students. This paper introduces experimental educations on mechatronics, e.g., digital logic circuits, 7-segment LED drive, square wave generation, microcontroller programming using assembly and C languages, timer interrupt, and step motor drive using a small 5 V power supply, a breadboard, various electronic and electric components, a microcontroller and its programmer, a step motor, and a student's PC. In the developed mechatronics course, experimental educations are scheduled in parallel with content's lectures together, and cheap and economic experimental environment is prepared for students in which students can easily practice experimental works in advance or later at home by themselves.

A Study on Problem Solving of 3D Printing Production of Scaffold Using ADRIGE TRIZ Algorithm and DOE (ADRIGE 트리즈 알고리즘과 실험계획법을 이용한 인공지지체 3D프린팅의 제작문제 해결에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2019
  • In this paper, we investigated the problems and solutions in the production of scaffolds using commercially available FDM 3D printers. We used ADRIGE TRIZ algorithm to systematically analyze the problems and suggest solutions. We printed scaffolds using suggested solutions. We measured the pore size and printing time of the scaffolds. We have confirmed that the printing precision is greater than 99% and the printing time is decreased by half. The suggested solutions proved its validity through experiments and showed satisfactory results.

A Study on the Development of AMESim Model for Construction of Cooling System for Semiconductor Etching Process (반도체 식각 공정용 냉각 시스템 구축을 위한 AMESim 모델 개발)

  • Kim, Daehyeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.106-110
    • /
    • 2017
  • Due to the plasma applied from the outside, which acts as an etchant during the etching process, considerable heat is transferred to the wafer and a separate cooling process is performed to effectively remove the heat after the process. In this case, a direct cooling method using a refrigerant is suitable for cooling through effective heat exchange. The direct cooling method using the refrigerant using the latent heat exchange is superior to the cooling method using the sensible heat exchange. Therefore, in this paper, AMESim is used to design a direct refrigerant cooling system using latent heat exchange simulator was built.The constructed simulator is reliable compared with the actual experimental results. It is expected that this simulator will help to design and search for optimal process conditions.

  • PDF