• Title/Summary/Keyword: 메인 컨트롤 밸브

Search Result 7, Processing Time 0.016 seconds

A Study on the Efficiency of a Load Sensing Main Control Valve Using SimulationX (SimulationX를 이용한 부하 감지형 메인 컨트롤밸브의 효율에 관한 연구)

  • Kim, Dong Myoung;Lee, Jung Min;Jung, Won Jee;Jang, Joo Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • In this study, we develop a model of an open center and load-sensing system and for a main control valve to analyze system characteristics and efficiency using SimulationX. In order to analyze the operating characteristics of the pressure and flow of the main control valve of an open center system, a test was performed at each port. The reliability of the model was confirmed by comparing the similarity of the analysis results with the test results before analyzing the operating characteristics of the system. Development of the load sensing main control valve was performed by adding a flow sharing valve and a notched shape to the open center system based on it's the proven reliability. The authors performed the simulation under the same load conditions in order to compare the efficiency of the systems. Additionally, the combined operation performance was investigated by means of analyzing the characteristics of flow distribution under different load conditions.

Development and Verification of Analytical Model of a Main Control Valve (메인 컨트롤밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Lee, J.M.;Jung, W.J.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • In order to control the actuators of hydraulic machinery such as excavators, various control valves are typically assembled in a single block. Such a control block is called a main control valve(MCV). In this paper, we analyzed the working principle and the particular purpose of the design of all valves included in the MCV system. To Examine the reliability of the analysis model, the pressure drop of the MCV at each port was measured. The authors developed an analytical model of the control valve(main spool, load poppet, pressure relief, make up, and regeneration). The authors considered the notch shape of the spool while developing the analytical models of the main spool valve. Most importantly, at the stage before the analysis model was applied in the design tuning, the reliability was ensured by comparing the analysis results with the test results. This paper showed a process of developing an analysis model that can be utilized in the design and tuning stages.

A Study on Modeling and Simulation of Hydraulic System for a Wheel Loader using AMESim (AMESim을 이용한 휠로더 유압시스템의 모델링 및 시뮬레이션에 관한 연구)

  • Chung, Y.K.;Park, S.H.;Jeong, C.S.;Jeong, Y.M.;Yang, S.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • 본 논문은 유압해석 상용툴인 AMESim을 이용하여 로드센싱형 휠로더 유압 시스템을 모델링 하였다. 휠로더 유압장치의 주요 구성요소인 펌프, 메인 컨트롤밸브, 압력 보상기, 리모트 컨트롤밸브 및 작업 장치를 모델링 하였으며 실제 차량의 제원을 적용하여 시뮬레이션을 수행하였다. 시뮬레이션 결과와 실차 데이터를 비교 검토하여 시뮬레이션 결과와 실차 데이터가 유사함을 알 수 있었다.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Static Analysis of Dedicated Proportional Flow Control Valve for IMV (굴삭기 IMV용 비례 유량제어밸브 정특성 해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

A Study on the Bucket Tip's Position Control for the Intelligent Excavation System (지능형 굴삭 시스템의 버킷 끝단 위치제어에 관한 연구)

  • Kim, K.Y.;Jang, D.S.;Ahn, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • For the bucket tip position control of the excavator, a traditional hydraulic excavator system was exchanged into an electro-hydraulic one. EPPR valves are attached to the traditional MCV and hydraulic joysticks are replaced by electronic ones to develop the electro-hydraulic system. To control the electronic pump with a good performance, the control logic for the pump is deduced from the AMESim simulation and the experimental method on the test bench. To get a good position control performance of the excavator bucket tip, PI+AntiWindup controller is selected as a position controller. The experimental results showed the good controllability for the electro-hydraulic excavator system on the test bench.

  • PDF

Transient Response Analysis of a Control Valve for CO2 Refrigerant (CO2냉매용 제어밸브의 응답 특성)

  • Kim, Bo Hyun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.