기계학습의 데이터 크기 및 컴퓨팅 부하 증가로 사물인터넷 시스템에서 에너지 효율적인 자원 플래닝이 중요해지고 있다. 본 논문에서는 사물인터넷 시스템의 실시간 워크로드 변화를 지원하는 자원 플래닝 정책을 제안한다. 이를 위해 본 논문은 실시간 태스크를 고정 태스크와 가변 태스크로 나누고 다양한 워크로드 상황에 대한 자원 플래닝 최적화를 수행한다. 이를 바탕으로 사물인터넷 시스템의 자원 설정을 고정 태스크 기반으로 시작한 후, 가변 태스크가 활성화될 경우 상황에 맞는 자원 플래닝을 즉시 적용할 수 있도록 한다. 시뮬레이션을 통해 제안한 정책이 사물인터넷 시스템의 프로세서 및 메모리 소모 에너지를 크게 줄일 수 있음을 보인다.
정보 처리 기술의 컴퓨터 및 네트워크 의존도가 심화됨에 따라 컴퓨터 및 네트워크에 대한 침입 사례가 갈수록 증가하고 있다. 시스템 및 네트워크의 침입을 방지하기 위하여 호스트와 네트워크 기반 침입차단시스템(방화벽 등)이 개발되었지만 기존의 규칙 기반의 침입차단시스템만으로는 보안 관리에 많은 어려움이 있다. 이러한 이유로 인해 시스템 및 네트워크 자원에 대한 침입을 실시간으로 탐지하고 이에 대처하는 침입탐지시스템 개발에 대한 요구가 증가하고 있다. 본 논문에서는 비선형 자료에도 적용 가능하며 수렴성이 보장된 실시간 특징 추출 방법으로 APEX 알고리즘과 점증적 LS-SVM 분류기를 결합한 실시간 침입탐지 시스템을 개발하였다. 일반적으로 실시간 처리 방식은 메모리의 효율성이 좋고 학습 자료의 추가를 허용하는 장점이 있지만 일괄처리 방식에 비해 정확도가 떨어지는 단점이 있다. 따라서 제안한 시스템은 정확도 면에서도 일괄 처리 방식과 비슷한 성능을 나타내고 있어 상용화가 가능한 시스템이다.
본 논문에서는 형태소 unigram과 한국어 어절을 형성하는 형태소 범주 패턴에 기반하여 어절을 인식하는 한국어 띄어쓰기 시스템을 구현하였다. 기존에 많이 연구된 통계 정보를 이용한 띄어쓰기 모델은 비교적 짧은 시간에 쉽게 구현할 수 있는 장점이 있지만, 한국어의 형태 유형론적 특성 때문에 발생하는 (ㄱ) 자료부족 문제와 (ㄴ) 메모리 크기 문제에 효과적으로 대처하지 못한다. 본 논문은 이 두 문제를 동시에 해결하기 위해 어절을 구성하고 있는 개별 형태소의 통계 정보와 그 형태소의 범주의 통계 정보를 기반으로 하여 띄어쓰기 후보 어절들을 추천한다. 임의의 후보 어절이 최종의 띄어쓰기 단위인 어절이 될 수 있는 확률은 (ㄱ) 해당 후보 어절 내의 각 형태소 확률과 (ㄴ) 해당 후보 어절을 구성하기 위해 그 형태소의 범주가 다른 형태소 범주와 함께 형성하는 패턴 내에서 차지하는 '범주가중치'를 고려하여 구한다. 해당 '범주가중치'는 (ㄱ) 말뭉치로부터 실제로 관찰된 어절의 확률과 (ㄴ) 후보 어절 내의 개별 형태소의 확률과 (ㄷ) 그 범주 가중치에 의해 추정된 어절 확률 사이의 평균 에러(error mean)가 최저가 되는 방향으로 학습하여 얻어진다.
최근 딥러닝 기반의 얼굴 초해상화 연구는 일반적인 영상에 대한 초해상화 연구와 달리 인간의 얼굴이 가지는 구조적 혹은 의미론적인 특성을 반영한 안면 랜드마크 정보, 주요 영역 딕셔너리와 같은 사전 및 참조 정보를 사용하여 우수한 초해상화 결과를 보였다. 그러나 얼굴에 특화된 사전 정보를 사용할 시 추가적인 처리 소요 시간과 메모리를 요구하는 단점이 존재한다. 본 논문은 앞서 언급한 한계점을 극복하고자 지식 증류 기법을 활용한 효율적인 초해상화 모델을 제안한다. 주요 얼굴 영역 기반의 딕셔너리 정보를 사용하는 선생 모델에 지식 증류 기법을 적용하여 추론 시 랜드마크 정보와 부가적인 딕셔너리 사용이 필요 없는 학생 모델을 구축하였다. 제안하는 학생 모델은 특징맵 기반의 적대적 지식 증류를 통해 얼굴 주요 영역 딕셔너리를 가지고 있는 선생 모델로부터 학습을 진행하였다. 본 논문은 제안하는 학생 모델의 실험 결과를 통해 정량 및 정성적으로 우수함을 보이며 선생 모델의 연산량에 비해 90% 이상 절감되는 효율성을 증명한다.
실시간 시스템은 시스템이 적시성을 보장하는지 파악하기 위해 실시간 감시기법을 이용한다. 일반적으로 실시간 감시는 실시간 시스템의 현재 동작상태를 파악하는데 중점을 두는 기법이다. 그러나 실시간 시스템의 안정적인 수행을 지원하기 위해서는, 현재 상태를 파악하는 것뿐 아니라, 실시간 시스템 및 시스템상에서 동작하는 실시간 프로세스들의 수행도 예측할 수 있어야 한다. 그러나 기존 예측모델을 실시간 감시기법에 적용하기에는 몇 가지 한계가 있다. 첫째, 예측기능은 실시간 프로세스가 종료한 시점에서 정적인 분석을 통해 수행된다. 둘째, 예측을 위해 사전 기초 통계분석이 필요하다. 셋째, 예측을 위한 이전확률 및 클러스터 정보가 현재 시점을 정확하게 반영하지 못한다. 본 논문에서는 이러한 문제점들을 해결하고 실시간 감시기법에 적용할 수 있는 학습 기반의 수행 예측모델을 제안한다. 이 모델은 학습기법을 통해 불필요한 전처리과정을 없애고, 현시점의 데이터를 이용해, 보다 정확한 실시간 프로세스의 수행 예측이 가능하도록 한다. 또한 이 모델은 실시간 프로세스 수행 시간의 증가율 분석을 통해 다단계 예측을 지원하며, 무엇보다 실시간 프로세스가 실행되는 동안 예측이 가능한 동적 예측을 지원하도록 설계하였다. 실험 결과를 통해 훈련집합의 크기가 10 이상이면 80% 이상의 판단 정확도를 보이며, 다단계 예측의 경우, 훈련집합의 크기 이상의 수행 횟수를 넘으면 다단계 예측의 예측 차는 최소화되는 것으로 나타났다. 본 논문에서 제안한 예측모델은 가장 단순한 학습 알고리즘을 적용했다는 점과, CPU, 메모리, 입출력 데이터를 다루는 다차원 자원공간 모델을 고려하지 못한 한계가 있어 향후에 관련 연구가 요구된다. 본 논문에서 제안하는 학습기반 수행 예측모델은 실시간 감시 및 제어를 필요로 하는 분야 및 응용 분야에 적용할 수 있다.
본 연구에서는 이진 가중치 신경망(BWN)을 부동소수점 데이터를 사용하여 학습시킨 후에, 학습된 파라미터와 주요연산을 고정소수점으로 근사화시키는 과정에서 정확도의 변화를 분석하였다. 신경망을 이루고 있는 각 계층의 입력 데이터와 컨볼루션 연산의 계산에 고정소수점 수를 사용했으며, 이때 고정소수점 수의 전체 bit 수와 소수점 이하 bit 수에 변화를 주면서 정확도 변화를 관찰하였다. 각 계층의 입력 값과 중간 계산값의 정수 부분의 손실이 발생하지 않으면 고정소수점 연산을 사용해도 부동소수점 연산에 비해 큰 정확도 감소가 없었다. 그리고 오버플로가 발생하는 경우에 고정소수점 수의 최대 또는 최소값으로 근사시켜서 정확도 감소를 줄일 수 있었다. 이 연구결과는 FPGA 기반의 BWN 가속기를 구현할 때에 필요한 메모리와 하드웨어 요구량을 줄이는 데 사용될 수 있다.
최근 국지성 폭우로 인한 침수 피해가 빈번하게 발생함에 따라 침수 피해를 사전 예방하기 위한 침수 예측 연구가 진행되고 있다. 본 논문에서는 머신 러닝 기반으로 강우 데이터를 이용해 침수 깊이와 침수 위치를 예측하는 모델을 개발하는 방법을 연구한다. 실시간 강우량을 입력으로 사용하여 다양한 강우 분포 패턴에 강건하게 구성하고 적은 메모리로 모델을 학습시킬 수 있는 2가지 데이터 셋(set) 구성 방법을 제시하였다. 침수에 유의미한 영향을 미치는 valid total 데이터는 침수 위치는 잘 예측했지만, 특정 강우 패턴에 대해 값이 다르게 나타나는 경향을 띠었다. 부분적이지만 침수에 영향을 미치는 영역을 valid local이라 한다. Valid local은 고정점 방법에 대해서는 잘 학습되었지만, 임의점 방법에 대해서는 침수 위치를 정확하게 나타내지 못했다. 본 연구를 통해 실시간으로 침수 깊이와 위치를 예측할 수 있게 되어 큰 피해를 예방할 수 있을 것으로 예상된다.
본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.
다중 판별자를 가지는 RAM 기반 신경망은 단일판별자의 신경 망보다 다범주에서 더 우수한 성능 가진다. 다중 판별자를 가지는 경험유관이진신경망과 3차원 뉴로 시스템(3DNS)은 RAM 기반 이진신경망의 단점인 추가 및 반복 학습, 일반화 패턴 추출 등을 개선하였다. 다중 판별자를 사용하는 신경망의 범주 결정 방법은 MRD 기법으로, 각 판별자의 출력합들 중 최대응답 값으로 결정된다. 그러나 학습 패턴량이 증가하면 신경소자와 판별자의 메모리 포화 문제가 발생되며 이는 MRD의 변별력 저하로 전체 성능이 떨어지는 원인이 된다. 이를 해결하기 위해 기존 MRD의 성능을 향상시킬 수 있는 연구가 필요하다고 본다. 본 논문에서는 최적의 MRD 방법을 찾기 위해 사상 매칭, 누적 필터비 인형 응답 차 그리고 제안된 MRD 기법들을 이용한 최적 MRD 기법 등을 제안하였다. 제안된 MRD의 평가는 3DNS에 전처리 과정 없이 MNIST의 NIST에서 제공하는 숫자 자료를 이용하였다. 제안된 기법들은 기존 MRD보다 우수한 인식률과 입력 패턴의 변형 및 노이즈에 대하여 안정적인 결과를 보였다.
최근 각종 온라인 상거래 및 개인 신분카드 이용이 늘어나면서 개인 인증의 중요성이 부각되고 있다. RFID(Radio Frequency Identification) tag가 내장된 개인 신분 카드가 점차 증가하고 있지만, 본인의 인증을 할 수 있는 방법이 미비하기 때문에, 자동화 할 수 있는 대책이 시급하다. RFID tag는 현재 메모리 용량이 매우 작기 때문에, 개인의 생체정보를 저장하기 위해서는 효율적인 특징추출 방법이 필요하며, 저장된 특징들을 비교하기 위해서는 새로운 인식방법이 필요하다. 본 논문에서는 인간의 인지학적인 두뇌 원리인 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특정을 구성할 수 있는 해마 신경망 모델링 알고리즘을 이용한 개인생체 인증 시스템에 관한 연구를 수행하였다. 시스템은 크게 NMF(Non-negative Matrix Factorization)와 LDA(Linear Discriminants Analysis) 혼합 알고리즘을 이용한 특징 추출 부분과 해마신경망을 모델링하고 인식 성능을 실험하는 것으로 구성 되어 있다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정변화와 포즈변화가 포함된 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특정 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.