• Title/Summary/Keyword: 멀티 쓰레드

Search Result 114, Processing Time 0.017 seconds

Design and Implementation of a R1000/R2000 based RFID Reader Which Supports the Low Level Reader Protocol (LLRP를 지원하는 R1000/R2000 겸용 RFID 리더)

  • Bae, Sung-Woo;Ryu, Won-Sang;Kwak, Ho-Gil;Joung, Sub-Myoung;Park, Jun-Seok;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.279-286
    • /
    • 2010
  • RFID reader protocol is an interface between RFID readers and higher (host) such as RFID middlewares and applications. At present, reader protocols provided by vendors are different from each other and there are compatibility problems in environment using heterogeneous readers. In this paper, to solve this problem, an RFID reader which supports LLRP(Low Level Reader Protocol), a well-known standard reader protocol presented by EPCglobal is designed and implemented. It is designed with two modules and supports various interfaces for easy adaptation to various applications. The LLRP protocol is implemented over a embedded LINUX multi-thread environment. It not only supports almost all properties of LLRP, and is designed with flexible hardware/software architecture to meet various requirements.

Next-Generation File Transfer Protocol Which support concurrent file transmissions effectively in Internet (인터넷에서 동시 파일 전송을 효과적으로 지원하는 NFTP의 설계 및 구현)

  • Choi, Jae-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1C
    • /
    • pp.90-95
    • /
    • 2002
  • Though the FTP(File Transfer Protocol) has been used widely and stable, It has the structural weakness that can't support current file transmissions so that we have to wait the completion of previous file transmission when try to transmit another file. If try to transmit multiple files concurrently using this FTP, It has to forking multiple FTP servers and clients in each user's PC and ISP's host machine it would result in the waist of memory, resource of network and the high workload of system. In order to solving previous problem, in this paper I have designed the new model of FTP which based on multi-thread and created NFTP(Next-Generation FTP)protocol so that may reduce the workload of system and support current file transmission effectively. I have implemented NFTP and also applied to real service, as a result It have provided reliable service by reducing the workload of system and saved the waiting time which would happened.

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

Implementation of PersonalJave™ AWT using Light-weight Window Manager (경량 윈도우 관리기를 이용한 퍼스널자바 AWT 구현)

  • Kim, Tae-Hyoun;Kim, Kwang-Young;Kim, Hyung-Soo;Sung, Min-Young;Chang, Nae-Hyuck;Shin, Heon-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.240-247
    • /
    • 2001
  • Java is a promising runtime environment for embedded systems because it has many advantages such as platform independence, high security and support for multi-threading. One of the most famous Java run-time environments, Sun's ($PersonalJave^{TM}$) is based on Truffle architecture, which enables programmers to design various GUIs easily. For this reason, it has been ported to various embedded systems such as set-top boxes and personal digital assistants(PDA's). Basically, Truffle uses heavy-weight window managers such as Microsoft vVin32 API and X-Window. However, those window managers are not adequate for embedded systems because they require a large amount of memory and disk space. To come up with the requirements of embedded systems, we adopt Microwindows as the platform graphic system for Personal] ava A WT onto Embedded Linux. Although Microwindows is a light-weight window manager, it provides as powerful API as traditional window managers. Because Microwindows does not require any support from other graphics systems, it can be easily ported to various platforms. In addition, it is an open source code software. Therefore, we can easily modify and extend it as needed. In this paper, we implement Personal]ava A WT using Microwindows on embedded Linux and prove the efficiency of our approach.

  • PDF