• Title/Summary/Keyword: 멀티 서포트 벡터 머신

Search Result 18, Processing Time 0.022 seconds

A Robust Face Tracking System using Effective Detector and Kalman Filter (효과적인 검출기와 칼만 필터를 이용한 강인한 얼굴 추적 시스템)

  • Seong, Chi-Young;Kang, Byoung-Doo;Jeon, Jae-Deok;Kim, Sang-Kyoon;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.26-35
    • /
    • 2007
  • We present a robust face tracking system from the sequence of video images based on effective detector and Kalman filter. To construct the effective face detector, we extract the face features using the five types of simple Haar-like features. Extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. We trace the moving face with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. To make a real-time tracking system, we reduce processing time by adjusting the frequency of face detection. In this experiment, the proposed system showed an average tracking rate of 95.5% and processed at 15 frames per second. This means the system is robust enough to track faces in real-time.

  • PDF

Effective Mood Classification Method based on Music Segments (부분 정보에 기반한 효과적인 음악 무드 분류 방법)

  • Park, Gun-Han;Park, Sang-Yong;Kang, Seok-Joong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.391-400
    • /
    • 2007
  • According to the recent advances in multimedia computing, storage and searching technology have made large volume of music contents become prevalent. Also there has been increasing needs for the study on efficient categorization and searching technique for music contents management. In this paper, a new classifying method using the local information of music content and music tone feature is proposed. While the conventional classifying algorithms are based on entire information of music content, the algorithm proposed in this paper focuses on only the specific local information, which can drastically reduce the computing time without losing classifying accuracy. In order to improve the classifying accuracy, it uses a new classification feature based on music tone. The proposed method has been implemented as a part of MuSE (Music Search/Classification Engine) which was installed on various systems including commercial PDAs and PCs.

  • PDF

A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features (명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법)

  • Kang, Seung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.870-878
    • /
    • 2013
  • In this paper, we propose a novel fingerprint classification method to enhance the accuracy and efficiency of the fingerprint identification system, one of biometrics systems. According to the previous researches, fingerprints can be categorized into the several patterns based on their pattern of ridges and valleys. After construction of fingerprint database based on their patters, fingerprint classification approach can help to accelerate the fingerprint recognition. The reason is that classification methods reduce the size of the search space to the fingerprints of the same category before matching. First, we suggest a method to extract region of interest (ROI) which have real information about fingerprint from the image. And then we propose a feature extraction method which combines gray level co-occurrence matrix (GLCM) and wavelet features. Finally, we compare the performance of our proposed method with the existing method which use only GLCM as the feature of fingerprint by using the multi-layer perceptron and support vector machine.

Efficient Transformer Dissolved Gas Analysis and Classification Method (효율적인 변압기 유중가스 분석 및 분류 방법)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.563-570
    • /
    • 2018
  • This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.

Acoustic Emission based early fault detection and diagnosis method for pipeline (음향방출 기반 배관 조기 결함 검출 및 진단 방법)

  • Kim, Jaeyoung;Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.571-578
    • /
    • 2018
  • The deteriorated pipline often causes the unexpected leakage and crack. Negligence and late maintenance leads the enormous damage for gas and water resource. This paper proposes early fault detection and diagnosis algorithm for pipeline using acoustic emission (AE) signals. Early fault detection method for pipeline compares the frequency amplitude of the spectrum to that of the spectrum in normal condition. Larger amplitude of the spectrum indicates abnormal condition. Early fault diagnosis algorithm uses support vector machines (SVM), which is trained for normal and abnormal conditions to diagnose the measured AE signal from the target pipeline. In the experiment, a pipeline testbed is constructed similarly to real industrial pipeline. Normal, 5mm cracked, 10mm holed pipelines are installed and tested in this study. The proposed fault detection and diagnosis technique is validated as an efficient approach to detect early faulty condition of pipeline.

Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images (텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술)

  • Kim, Eun Yi;Ko, Eunjeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.419-431
    • /
    • 2018
  • In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.

VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram (VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구)

  • Kim, Sung-Chul;Yu, Hwan-Jo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.722-729
    • /
    • 2010
  • Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.

Face Identification Using a Near-Infrared Camera in a Nonrestrictive In-Vehicle Environment (적외선 카메라를 이용한 비제약적 환경에서의 얼굴 인증)

  • Ki, Min Song;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2021
  • There are unrestricted conditions on the driver's face inside the vehicle, such as changes in lighting, partial occlusion and various changes in the driver's condition. In this paper, we propose a face identification system in an unrestricted vehicle environment. The proposed method uses a near-infrared (NIR) camera to minimize the changes in facial images that occur according to the illumination changes inside and outside the vehicle. In order to process a face exposed to extreme light, the normal face image is changed to a simulated overexposed image using mean and variance for training. Thus, facial classifiers are simultaneously generated under both normal and extreme illumination conditions. Our method identifies a face by detecting facial landmarks and aggregating the confidence score of each landmark for the final decision. In particular, the performance improvement is the highest in the class where the driver wears glasses or sunglasses, owing to the robustness to partial occlusions by recognizing each landmark. We can recognize the driver by using the scores of remaining visible landmarks. We also propose a novel robust rejection and a new evaluation method, which considers the relations between registered and unregistered drivers. The experimental results on our dataset, PolyU and ORL datasets demonstrate the effectiveness of the proposed method.