• Title/Summary/Keyword: 멀티 모달리티

Search Result 30, Processing Time 0.033 seconds

Multimedia Recommender System Based on Contrastive Learning with Modality-Reflective View (모달리티 반영 뷰를 활용하는 대조 학습 기반의 멀티미디어 추천 시스템)

  • SoHee Ban;Taeri Kim;Sang-Wook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.635-638
    • /
    • 2024
  • 최근, 대조 학습 기반의 멀티미디어 추천 시스템들이 활발하게 연구되고 있다. 이들은 아이템의 다양한 모달리티 피처들을 활용하여 사용자와 아이템에 대한 임베딩들(뷰들)을 생성하고, 이들을 통해 대조 학습을 진행한다. 학습한 뷰들을 추천에 활용함으로써, 이들은 기존 멀티미디어 추천 시스템들보다 상당히 향상된 추천 정확도를 획득했다. 그럼에도 불구하고, 우리는 기존 대조 학습 기반의 멀티미디어 추천 시스템들이 아이템의 뷰들을 생성하는 데에 아이템의 모달리티 피처들을 올바르게 반영하는 것의 중요성을 간과하며, 그 결과 추천 정확도 향상에 제약을 갖는다고 주장한다. 이는 아이템 임베딩에 아이템 자신의 모달리티 피처를 올바르게 반영하는 것이 추천 정확도에 향상에 도움이 된다는 기존 멀티미디어 추천 시스템의 발견에 기반한다. 따라서 본 논문에서 우리는 아이템의 모달리티 피처들을 올바르게 반영할 수 있는 뷰(구체적으로, 모달리티 반영 뷰)를 통해 대조 학습을 진행하는 새로운 멀티미디어 추천 시스템을 제안한다. 제안 방안은 두 가지 실세계 공개 데이터 집합들에 대해 최신 멀티미디어 추천 시스템보다 6.78%까지 향상된 추천 정확도를 보였다.

Comparison of Sequential Multi-Modality Data Effects on Memory Recall (기억 회상 현상에 대한 순차적 멀티 모달리티 데이터의 영향 비교)

  • Yun, Ung-Chang;Fareed, Umer;Jang, Byeong-Tak
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.66-71
    • /
    • 2010
  • 본 논문에서는 멀티 모달리티가 인간의 기억 현상 중에서 특히 회상 현상에 도움이 될 것이 라는 아이디어를 인간 실험과 컴퓨터 시뮬레이션을 통해서 비교 확인한다. 우리는 순차적 멀티모달리티 정보가 기억회상 현상에 미치는 영향을 알아보기 위해서 확률 하이퍼그래프 메모리모델을 사용하여 컴퓨터 시뮬레이션을 수행하였으며, 시뮬레이션 결과를 동일한 데이터를 사용한 인간 실험 결과와 비교하였다. 본 실험에서는 TV 드라마의 비디오 데이터를 이용하여 이전시점의 사진과 문장 정보가 다음 시점의 문장 생성에 미치는 영향을 확인하였다. 본 실험의 목적은 이전 시점의 문장 정보와 문장/사진 정보를 활용하여 멀티 모달리티의 영향을 확인하는 것이며 다양한 시점의 정보를 활용하여 순차성이 회상에 갖는 영향을 확인하는 것이다. 이를 통해서 기억 회상 현상에 있어서 멀티 모달리티가 미치는 영향과 순차적 데이터가 미치는 영향을 보일 수 있었으며, 기계를 통해서 인간의 기억 회상 현상을 재현할 수 있는 시뮬레이션 모델을 구현 하는데 실마리를 제공하였다.

  • PDF

Design of dataglove based multimodal interface for 3D object manipulation in virtual environment (3 차원 오브젝트 직접조작을 위한 데이터 글러브 기반의 멀티모달 인터페이스 설계)

  • Lim, Mi-Jung;Park, Peom
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1011-1018
    • /
    • 2006
  • 멀티모달 인터페이스는 인간의 제스처, 시선, 손의 움직임, 행동의 패턴, 음성, 물리적인 위치 등 인간의 자연스러운 행동들에 대한 정보를 해석하고 부호화하는 인지기반 기술이다. 본 논문에서는 제스처와 음성, 터치를 이용한 3D 오브젝트 기반의 멀티모달 인터페이스를 설계, 구현한다. 서비스 도메인은 스마트 홈이며 사용자는 3D 오브젝트 직접조작을 통해 원격으로 가정의 오브젝트들을 모니터링하고 제어할 수 있다. 멀티모달 인터랙션 입출력 과정에서는 여러 개의 모달리티를 병렬적으로 인지하고 처리해야 하기 때문에 입출력 과정에서 각 모달리티의 조합과 부호화 방법, 입출력 형식 등이 문제시된다. 본 연구에서는 모달리티들의 특징과 인간의 인지구조 분석을 바탕으로 제스처, 음성, 터치 모달리티 간의 입력조합방식을 제시하고 멀티모달을 이용한 효율적인 3D Object 인터랙션 프로토타입을 설계한다.

  • PDF

Sentence generation on sequential multi-modal data using random hypergraph model (랜덤 하이퍼그래프 모델을 이용한 순차적 멀티모달 데이터에서의 문장 생성)

  • Yoon, Woong-Chang;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.376-379
    • /
    • 2010
  • 인간의 학습과 기억현상에 있어서 멀티모달 데이터를 사용하는 것은 단순 모달리티 데이터를 사용하는 것에 비해서 향상된 효과를 보인다는 여러 연구 결과가 있어왔다. 이 논문에서는 인간의 순차적인 정보처리와 생성현상을 기계에서의 시뮬레이션을 통해서 기계학습에 있어서도 동일한 현상이 나타나는지에 대해서 알아보고자 하였다. 이를 위해서 가중치를 가진 랜덤 하이퍼그래프 모델을 통해서 순차적인 멀티모달 데이터의 상호작용을 하이퍼에지들의 조합으로 나타내는 것을 제안 하였다. 이러한 제안의 타당성을 알아보기 위해서 비디오 데이터를 이용한 문장생성을 시도하여 보았다. 이전 장면의 사진과 문장을 주고 다음 문장의 생성을 시도하였으며, 단순 암기학습이나 주어진 룰을 통하지 않고 의미 있는 실험 결과를 얻을 수 있었다. 단순 텍스트와 텍스트-이미지 쌍의 단서를 통한 실험을 통해서 멀티 모달리티가 단순 모달리티에 비해서 미치는 영향을 보였으며, 한 단계 이전의 멀티모달 단서와 두 단계 및 한 단계 이전의 멀티모달 단서를 통한 실험을 통해서 순차적 데이터의 단계별 단서의 차이에 따른 영향을 알아볼 수 있었다. 이를 통하여 멀티 모달리티가 시공간적으로 미치는 기계학습에 미치는 영향과 순차적 데이터의 시간적 누적에 따른 효과가 어떻게 나타날 수 있는지에 대한 실마리를 제공할 수 있었다고 생각된다.

  • PDF

W3C based Interoperable Multimodal Communicator (W3C 기반 상호연동 가능한 멀티모달 커뮤니케이터)

  • Park, Daemin;Gwon, Daehyeok;Choi, Jinhuyck;Lee, Injae;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.140-152
    • /
    • 2015
  • HCI(Human Computer Interaction) enables the interaction between people and computers by using a human-familiar interface called as Modality. Recently, to provide an optimal interface according to various devices and service environment, an advanced HCI method using multiple modalities is intensively studied. However, the multimodal interface has difficulties that modalities have different data formats and are hard to be cooperated efficiently. To solve this problem, a multimodal communicator is introduced, which is based on EMMA(Extensible Multimodal Annotation Markup language) and MMI(Multimodal Interaction Framework) of W3C(World Wide Web Consortium) standards. This standard based framework consisting of modality component, interaction manager, and presentation component makes multiple modalities interoperable and provides a wide expansion capability for other modalities. Experimental results show that the multimodal communicator is facilitated by using multiple modalities of eye tracking and gesture recognition for a map browsing scenario.

A Study on the Weight Allocation Method of Humanist Input Value and Multiplex Modality using Tacit Data (암묵 데이터를 활용한 인문학 인풋값과 다중 모달리티의 가중치 할당 방법에 관한 연구)

  • Lee, Won-Tae;Kang, Jang-Mook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.157-163
    • /
    • 2014
  • User's sensitivity is recognized as a very important parameter for communication between company, government and personnel. Especially in many studies, researchers use voice tone, voice speed, facial expression, moving direction and speed of body, and gestures to recognize the sensitivity. Multiplex modality is more precise than single modality however it has limited recognition rate and overload of data processing according to multi-sensing also an excellent algorithm is needed to deduce the sensing value. That is as each modality has different concept and property, errors might be happened to convert the human sensibility to standard values. To deal with this matter, the sensibility expression modality is needed to be extracted using technologies like analyzing of relational network, understanding of context and digital filter from multiplex modality. In specific situation to recognize the sensibility if the priority modality and other surrounding modalities are processed to implicit values, a robust system can be composed in comparison to the consuming of computer resource. As a result of this paper, it is proposed how to assign the weight of multiplex modality using implicit data.

A Personal Video Event Classification Method based on Multi-Modalities by DNN-Learning (DNN 학습을 이용한 퍼스널 비디오 시퀀스의 멀티 모달 기반 이벤트 분류 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1281-1297
    • /
    • 2016
  • In recent years, personal videos have seen a tremendous growth due to the substantial increase in the use of smart devices and networking services in which users create and share video content easily without many restrictions. However, taking both into account would significantly improve event detection performance because videos generally have multiple modalities and the frame data in video varies at different time points. This paper proposes an event detection method. In this method, high-level features are first extracted from multiple modalities in the videos, and the features are rearranged according to time sequence. Then the association of the modalities is learned by means of DNN to produce a personal video event detector. In our proposed method, audio and image data are first synchronized and then extracted. Then, the result is input into GoogLeNet as well as Multi-Layer Perceptron (MLP) to extract high-level features. The results are then re-arranged in time sequence, and every video is processed to extract one feature each for training by means of DNN.

Extraction Analysis for Crossmodal Association Information using Hypernetwork Models (하이퍼네트워크 모델을 이용한 비전-언어 크로스모달 연관정보 추출)

  • Heo, Min-Oh;Ha, Jung-Woo;Zhang, Byoung-Tak
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.278-284
    • /
    • 2009
  • Multimodal data to have several modalities such as videos, images, sounds and texts for one contents is increasing. Since this type of data has ill-defined format, it is not easy to represent the crossmodal information for them explicitly. So, we proposed new method to extract and analyze vision-language crossmodal association information using the documentaries video data about the nature. We collected pairs of images and captions from 3 genres of documentaries such as jungle, ocean and universe, and extracted a set of visual words and that of text words from them. We found out that two modal data have semantic association on crossmodal association information from this analysis.

  • PDF

Multi-modal Robot Emotion/Intention Expression using Editing Toolkit (에디팅 툴킷을 이용한 로봇의 멀티모달 감정/의사 표현)

  • Kim, Woo-Hyun;Park, Jeong-Woo;Lee, Won-Hyong;Kim, Won-Hwa;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1819_1820
    • /
    • 2009
  • 본 논문에서는 로봇의 감정과 의사표현을 위해서 3D모델 기반의 시뮬레이션이 가능한 에디팅 툴킷을 이용하였고, 사람과 로봇의 감정 상호 작용과 로봇이 제공하는 서비스의 구현을 위해서 다양한 멀티모달 표현을 생성하였다. 로봇은 얼굴표정, 그리고 목과 팔의 움직임으로 멀티모달 표현을 하였으며, 멀티모달 감정/의사 표현을 구성하는 각 모달리티별 표현들은 에디팅 툴킷을 통하여 동기화되었다. 이렇게 생성된 로봇의 멀티모달 감정/의사 표현은 DB형태로 저장되고, 이를 재조합하고 수정하여 새로운 표현을 생성할 수 있도록 하였다.

  • PDF

Predicting User Personality Based on Dynamic Keyframes Using Video Stream Structure (비디오 스트림 구조를 활용한 동적 키프레임 기반 사용자 개성 예측)

  • Mira Lee;Simon S.Woo;Hyedong Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.601-604
    • /
    • 2023
  • 기술이 발전함에 따라 복합적인 모달리티 정보를 포함하는 멀티미디어 데이터의 수집이 용이해지면서, 사람의 성격 특성을 이해하고 이를 개인화된 에이전트에 적용하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 비디오 스트림 구조를 활용하여 사용자 특성을 예측하기 위한 동적 키프레임 추출 방법을 제안한다. 비디오 데이터를 효과적으로 활용하기 위해서는 무작위로 선택한 프레임에서 특징을 추출하던 기존의 방법을 개선하여 영상 내 시간에 따른 정보와 변화량을 기반으로 중요한 프레임을 선택하는 방법이 필요하다. 본 논문에서는 제 3자가 평가한 Big-five 지표 값이 레이블링된 대표적인 데이터셋인 First Impressions V2 데이터셋을 사용하여 외면에서 발현되는 특징들을 기반으로 영상에서 등장하는 인물들의 성격 특성을 예측했다. 결론에서는 선택된 키프레임에서 멀티 모달리티 정보를 조합하여 성격 특성을 예측한 결과와 베이스라인 모델과의 성능을 비교한다.